ちょっとした工夫

2018年09月16日

ダイヤモンド・ホィール vs. 鋼

 最近はダイヤモンド工具が安い。百均の店に行くと様々な先端工具がある。さすがにダイヤモンド・ホィールは見たことが無いが、通販で購入すると安くて驚く。

 鋼材(鉄合金)をダイヤモンドホィールで切る話を、時々ウェブ上で見かけることがある。ご本人は気が付いていないようだが、あまり感心しない話である。ダイヤモンドは鉄と反応するからである。高温では炭化鉄になってしまう。

 例えば、モータのシャフトを切る時、ダイヤモンド・ホィールの直径を測定してから切ると、切断後少し小さくなっていることに気が付く。減るのは当然だと思う人もいるが、切断砥石を使った時は減り方が少ないはずだ。しかも速く切れる。

 ダイヤモンド・ヤスリで鉄合金を削るのはダメなのかと聞かれることもあるが、それは構わない。要するに温度が問題なのだ。赤熱したり、火花が散っているようではいけない。ヤスリ掛けでは、そんな温度にはならないから問題ない。

 旋盤でダイヤモンド工具を使う人は、アマチュアではいないだろうが、ゆっくり廻す分には問題ない。ダイヤモンドは熱伝導率が極めて大きいので、赤熱することはないはずだ。余談だが、こんな事例がある。

 そんな大きなものは持ったことは無いが、ダイヤモンドの薄板を温かい指で挟んで、氷に触れさせると、氷は融けてダイヤモンドが食い込んでいく。指は冷たさを感じる。ダイヤモンドは金属よりはるかに熱を伝えやすいものである。


dda40x at 09:16コメント(0) この記事をクリップ!

2018年09月14日

曲がったブラス板を平らにする

 薄いブラス板を落として、角がくしゃくしゃになった経験はないだろうか。ペンチで修正しても、細かい凹凸が残っている。普通の方法では直らないから、新たな材料で作るしかない。

ヤスリによる塑性変形の応力 昔、伊藤剛氏に教えて戴いた方法を紹介する。とても簡単な方法である。平面を見せたい方の面を下にして傷の無い金床の上で粗いヤスリを被せて、叩くのだ。もちろんヤスリを普通のハンマで叩くと傷が付くし、ヤスリも折れてしまうかもしれない。筆者はゴムハンマで叩く
 剛氏のオリジナルの方法は、ヤスリと共に万力で挟むということであった。筆者の万力の口金は模様があって、それが転写されてしまうから、傷の無い金床の上で叩く。もちろん、傷の無い鋼板と粗いヤスリとで、挟んで締めても良いのだ。少し伸びて大きくなるから、縁は削って修整する必要が生じるが、平面が戻る。この方法は、星打ち(七子目ならし)と呼ばれるらしい。

 理屈は一言で言えば、なるべくたくさんの部分(体積にして)が、塑性変形の応力を受けるようにすることである。ヤスリの尖った部分がブラスにたくさん突き刺さって、どこもかしこも塑性変形するわけだ。ペンチで曲げても部分的にしか応力は加わらないから、一部しか変形、修正されない。だから、へなへなのままである。

nanako 精密機械やメータなどの測定機の中をあけると、ベースになる金属板に無数に細かい傷がついているのをご覧になった方もあるだろう。あれこそがこの方法が応用された実例であるとのことだ。平面の板が必要な時は、この方法を使う以外ないのだ。

 この話を剛氏から教えて戴いたのは、30年以上前のことである。時々やるが、とてもうまく行く。紹介記事を書こうと思ったが、どんな絵を描こうかと迷っていたところ、名古屋模型鉄道クラブ会報の、古い記事を再録する作業をされている濱島氏からオリジナル記事を送って戴いた。 早速絵を描き直して紹介した。

dda40x at 09:14コメント(0) この記事をクリップ!

2018年09月10日

続 切断機をカスタマイズする

0001607_3 ブラス板を固定するとこんな感じである。小さなクランプ二つで留めて、簡単に切れる。直角ガイドがあるから極めて楽である。




 これをクラブの仲間に見せると加工希望者が集まった。鉄工所の暇な時期を狙って注文することにしたが、問題は個体差である。
 長年の間に微妙な設計変更があり、固定刃の位置を微調整するネジが付いたり、足が太く長くなったりしていた。ハンドルのネジも当初は1/2インチのネジであったが、途中でM12になり、最近はM16のようだ。
 今のところ、固定刃の高さには4通りがあることが分かっている。即ち、テーブルの脚の長さが4通りになる。同じものを作れば安いが、異なるものを現物に合わせて作ると手間が掛かり過ぎて、高いものになる。
 脚の長さは一定として、シムを挟んで高さ調整というのが一番楽な方法であろう。

holes また、テーブルを固定せず着脱式にすると、送り装置を付けられるという希望もある。テーブルを付けると、足を取り付けるネジが外せない。そこで卓抜したアイデアが出された。テーブルに、その固定ネジを抜き取る孔を二つあけることである。ネジの頭の直径よりも大きな孔をあけるのだが、そこにワークが嵌まり込むことは無いだろう。


dda40x at 09:10コメント(0) この記事をクリップ!

2018年09月08日

切断機をカスタマイズする

 遠藤機械が発売している切断機は、鉄道模型界では根強い人気を保っている。薄板を切るには便利な道具で 1 mm厚のブラス板が切れる。1200×365 mmのいわゆる定尺板(業界では小板という)を切ることができる。

 TMS1972年3月号の新製品紹介記事に出ている。当時の価格は12,000円だった。それが50年近く売り続けられている。確かに便利な道具である。しかし、ワークを手で保持しなければならないし、どうしても引き込まれる方向に力が掛かる。直角に切るのは少々コツがあって、そう簡単ではない。

plywood table 筆者は2本の足に大きな合板製のテーブルを付け、そこに留め具をネジ留めするようにしていた。マホガニィの合板の屑を用いた。合板は厚く、留めにくい。薄い鉄板で作れば小さなクランプで留められる。一念発起して簡単な図面を描き、友人の鉄工所に持ち込んだ。


0001607 テーブルは 180 mmの奥行(足の長さと同じ)とし、4本の支えで固定した。4 mm厚の板だから、踏んでも曲がらないが、それほど重くもない。1インチ(25 mm)のクランプで簡単に留められる。

0001607_2 直角に切りたい時の直角定規も同時に取り付けた。有効幅が 370 mmしかないので、365 mm幅の材料に対しては 5 mmしか余裕がない。細い角材の先を 2 mmまで削って熔接してもらった。ここの熔接は素人にはできない。プロの仕事である。筆者がやると真っ直ぐにはならない。
 これでざくざく切れる。

dda40x at 09:08コメント(2) この記事をクリップ!

2018年09月06日

続 塗装ブース

 今野氏のブログに塗装ブースにバッフルを付けた例が掲載されている。段ボールを切って付けただけだが、好結果を得ている。
 Brass_solder氏のブログにも掲載されている。材料の弾力で浮かせてある。これでも良いのだ。他にも作例が見つかるが、隙間が左右だけしかないものもあって、それでは効果が期待できない。
 上下左右に均等な隙間があることが肝要である。また、風圧でめり込まないようにする。工作時間は5分も掛からないであろう。皆さんも、ぜひ採用して戴きたい。驚くほどよく吸われ、臭いがしなくなる。

vortex 筆者の作例はジャンクのコンピュータ用冷却ファンを4台並列に付け、その前に間口60 cm、高さ40 cmのフッドがある。バッフルとの隙間は20 mmほどである。バッフルの縁は後ろに曲げておくと、音が多少静かになる。渦が大きくなって、遠くに行くからである。

 内部には照明がたくさんある。白熱電球もついているから、少々熱くなる。カブリを防ぐためである。白熱電球は製造停止になったので、スペアをかなり持っている。バッタ屋に行くと投げ売りしていたから買い占めた。このような用途には不可欠だ。
 また、ターンテイブルがあって、ワークを回転できる。その上には餅焼き金網で作った台がある。風が抜けるので、細かいものを塗装しやすい。

 排気は全く継ぎ目のないパイプで外に抜けている。外で上に行って雨が入らない形の煙突につながる。屋外で排ガスが漏れる分には問題ないが、室内では洩れないようにした。

 早く完成させて写真をお見せできるようにしたい。最近のような湿気の多い時期は、外では塗装ができないからだ。塗装待ちがかなり溜まっている。既に埃が付いたのもあって、洗わねばならない。無駄な仕事が増えてしまった。

dda40x at 09:06コメント(4) この記事をクリップ!

2018年09月04日

塗装ブース

 塗装ブースの設計に関することで、問い合わせを戴いた。現物が今はないので写真をお見せできないが、基本概念だけは図で説明できる。

 様々な形の塗装ブースが発表されているが、そのほとんどは気休めの域を出ていない。大量の空気を吸えばそれで良いはずだが、現実にはワークに当って跳ね返ったものは吸い込まれないこともある。ある友人の塗装に立ち会ったことがあり、部屋中にシンナの臭いが立ち込めたことが、それを裏付けている。

 少ない風量で、完全に近い吸い込みを期待しようと思うと、風速を上げることである。風量が限られているから、断面積を小さくするしかない。

fume hood 化学実験室には、fume hood(日本ではドラフト・チャンバーという怪しい言葉が使われている)がある。有毒なガスが出る実験はこの中でやる。そのガスが重いか軽いか、によって下の出口をあけたり、上をあけたりする。その手前にはバッフルという板があって、空気はそこの上下にあるスリットのどちらかから吸い出される。よくできた装置では、少ない風量で完全に吸い出される。前面のガラス戸も汚れない。これを見て閃き、自宅の台所の換気扇を改造した。

kitchen hood 30年以上前に住んでいたマンションの台所の換気扇は、何の工夫もない単なる箱状のもので油煙は溢れ出し、部屋が汚れた。風量を増すのは大変だったので、中にバッフルを吊り下げた。アルミ板を曲げてぶら下げただけだったが、効果は覿面で、煙は完全に吸い取られた。

 kitchen hood improved 煙はバッフルに当って横に移動する。その端の部分の流速は、今までの10倍ほどもあるので、煙ははみ出すことなく吸い取られる。おそらく、当時そのような台所換気扇は日本で唯一であったろう。特許を取っておけば良かった、と今でも思う。しかしその特許が売れたかは怪しい。このバッフルつきが商品化されたのは、ここ数年のことであるからだ。その購入者も理屈を理解しているようにも見えない。ただ意匠上のことだと思っているようだ。上記のリンクのカスタマーレビューの中にも、”カバーがある分吸い込み能力は並”と書いてあることからも推測できる。ずっと性能は良いはずである。メーカは、どうしてその機能を謳わないのだろう。
 
 その後転居して、現在の住居では油煙の出る物は外で調理するので、コンロの後ろから上にせり出して来る、簡単な局所換気扇で用が足りるようになった。(リンクは一例である。筆者宅のはもっと原始的なものである。) 

 現在の住居に引っ越してから、模型の塗装は外でやるようになったので、塗装ブースは作りかけて何年も放置されている。バッフルも用意したがまだ付けてない。


dda40x at 09:04コメント(5) この記事をクリップ!

2018年08月31日

崖の素材

 何人かの方に種明かしを迫られたが、沈黙を守っていた。これは天井のタイルである。日本語ではなんという言葉を使うと正しいのかよく分からないが、商品名は大建ダイロートンと書いてある。かなり安いものだが、工事現場で捨ててある半端品を貰って来たからタダである。
 材質はロックウール(石綿とは異なる人工物である)とセルロースだろう。後者は不燃加工してある。

cutting apartbreak it それを 7 cm程度の幅に切り、半分に割って切り口を露出させる。表面は多少人工的であるので、下を向けて見えないように積む。



making cliff 全体の褶曲の様子を頭の中で描いて、ある程度の角度で積む。支えの合板にも接着剤を付けて剥がれて来ないようにする。



anticline この部分は背斜になっている。多分この下には石油が埋もれているだろう。だから石油タンクがあるというのは、出まかせである。


dda40x at 08:31コメント(3) この記事をクリップ!

2018年08月29日

ユニヴァ―サル・ジョイントの不等速性

 現物を手で廻してみると、この辺りは速くなる、この辺りは遅くなるというのが分かるが、紙の上で説明するのはなかなか難しい。傾いた軸を回転させながら正射影を見ると、回転部分の円周は楕円を描いている。周速度は一定でも、正射影は一定速ではないのだ。

universal joint そんな説明ではだめであるが、例の工学のエキスパートT氏が、素晴らしい絵を描いて送って下さったので、紹介したい。これを見れば一目瞭然である。よくもこんなうまい絵を描けるものだと、感心した。



 優秀な人は易しい説明で相手を納得させるという良い実例である。自称専門家は、専門用語を並べ立てて、相手を煙に巻こうとするが、それは説明能力がないことを立証していることに他ならない。

 先回紹介した音で角速度の変化を示す動画では飽き足らず、T氏は角速度変化を目でみる装置を作られた。まだ改良の余地があるそうで、この動画はより良いものができれば更新するそうだ。
 途中の黒いリンク装置は動力を二つに分けるクランクである。歯車ではバックラッシがあって誤差が出るので、クランクにしたそうだ。その部分は見る必要が無いのだ。向こうの回転板は左右で位相差が分かるようになっている。追い越したり、抜かれたりする。

 反対側から見た動画もある。


dda40x at 08:29コメント(4) この記事をクリップ!

2018年08月05日

2-truck Shay

 PFMの極めて初期の製品に 2-truck Shay がある。筆者が祖父江氏に最初に会ったときに見せて貰った。その時は単なるHOのシェイだとしか思わなかったが、そのうちにそれがHOの最初のプロダクションモデルであると気付いた。再度じっくり見せてもらった。(写真は上のリンクの一番下の方にある。)

 Oゲージのものとは伝導方式が違う。細いウォームをドライブシャフトに取り付けたウォームホイールに、斜めに裏側から当てている。ウォーム軸は片持ちである。うまい工夫だな、と感心した。しかしながら、祖父江氏は、
「3気筒のは、真ん中のヴァルヴギヤは動かねえんだ。インチキなんだけど、これでいいってんだから、しょうがねえよ。」
とぼやいた。
 その機関車は祖父江氏の設計である。その試作品を保管していたのだ。

  あと2,3輌のHOモデルがあった。ドイツ型の4気筒の機関車は、内側まで作られていた。プロダクションモデルでは、内側は省略されていたそうである。多分、ご自身の設計のものだろう。ギヤは外してあり、押すとするすると走った。

  既に当時祖父江氏は50歳になろうかという時で、「老眼で、もうHOは見えやしないよ。」と言っていた。それから30年以上、彼はより進歩した模型を作り出したのだ。

 このシェイのギヤトレインの設計は、その後の United の標準仕様となった。生産総数は万の桁であろう。もし祖父江氏がいなかったら、様々な点で大きな違いが生まれたことは間違いない。

dda40x at 08:05コメント(2) この記事をクリップ!

2018年07月18日

tapping aid

tapping aid (2) 先日、工具箱を整理していて見つけた。30年以上前に作ったものだ。

 タップでネジを立てる時に使う、極めて単純明快な補助具である。砲金のブロックに孔をあけただけのものであって、下穴の上にこれを置き、タップを挿す。歯車を廻すとネジが立つ。必ず直角に立つし、タップに妙な力がかかることも防げる。すなわち折れにくい。
 歯車は指に痛いが、それがかえって良い方向に働く。無理に廻そうとしないので、折れることが少ない。


tapping aid (3)tapping aid (1) M1〜M2のタップは太い部分の外形径が 3 mmで共通だが、M1は短いので、ブロックの薄い部分に貫通させてある。M3は、外径 4 mmである。

 インチのタップは、 外形が 3.2 mmなどいろいろあるから、測定して孔をあけねばならない。孔にはリーマを通す。

 筆者は最近はガラなどを使うので、久しく使ってなかった。ガラ導入以前は、やや大掛かりなtapping aid を使っていた。それはこんな形をしていた。

 GOW_3158六角のカートリッジをたくさん作って、タップを挿してハンダ付けしてある。それを差し替えて、上の大きなハンドルで廻す。
 M3 以上ではとても使いやすいが、M1.4あたりでは具合が悪いから、このブロックを使った。この大掛かりな道具の小さいヴァージョンを作ろうと思っていた矢先に、ガラが手に入ったので、使わなくなり、すっかり忘れていた。

 このブロックは単純な形であるので、お薦めする。材料はアルミ合金でも良いだろう。40年前、アメリカで見たことを記憶しているが、銘柄等思い出せない。 それは、細くて短いタップを挿す部分が、らせん階段のように低くなっていた。六角形だったような気がする。Bill Melisの自作品であったかもしれない。

2018年07月08日

続 架橋工事

bridges 橋脚、橋台が固着されていれば、あとの仕事は容易である。
 線路を延長し、ガードレイル付きの線路と結合する。レイルボンドを付け、通電を確保する。念のため、一番大きな車輛を通して、どこにも触らない事を確認した。また、曲線の外方向には関節機関車の煙室戸の脇のラニング・ボードが突出するので、それも確認した。
bridge すべて合格であったので、一応の完成である。本線の運行禁止を解く。新しい線路には油が付いている可能性があるので、直ちにリモネンで拭き、試運転列車を通した。

 橋の部分は音が極端に静かである。セラミック・ピックアップを用意してあるので、それを付けてアンプで増幅した音を出してみる予定だ。

 橋の色は目立たない。そういう意味では土屋氏の意向の通りであったが、ややアクセントも欲しかった。少しさび色も塗ってみよう。下の線路を通る車輛からの煙で汚れているはずだ。そのあたりのことは徐々に完了させる。

 着工から2年以上掛かったが、漸く完工した。設計に尽力して戴いた northerns484氏ハンダ付け時に手助け戴いた橋本氏、ガセット作りを手伝って下さったクラブのN氏には、心より感謝する。レーザ加工してくれた会社の専務には招待状を出さねばならない。

 来週からは高架部分の擁壁と岩肌の表現に取組む。その次は信号装置である。


2018年07月06日

架橋工事

bridge construction (1) レイアウト建設で、まだ実行しなければならない面倒な工事はいくつかあって、一つはこの架橋である。近々予定されている来客に合わせて、先週から工事を開始している。
 本物と同じで、本線を遮断する時間をなるべく短くするように段取りを考える。位置をマークし、橋の代わりに橋脚の上に載っている板は、橋の footprint(正射影と同義)である。原寸大の板であるから簡単である。垂れている電線は既存の饋電線である。仮橋脚、仮橋桁を撤去し、製作した橋脚を立てる。 
 まず細かい調整部分を解決する。これだけで1日掛かった。全て予定通りであったが、橋台(abutment) の部分で多少の調整が必要であった。橋は3次元の調整が必要なものである。
 この写真の左手に大きなアンヴィル(金床)がある。これは現場で切り離した貨物列車の前半が、勾配から滑り降りてくるのを阻止している。機関車ごと下って来るのである。

bridge construction (3) この写真の左の方は例の巨大な橋台が来る。高架の路盤の 24 mm 合板を少し切ってはめ込む。丸鋸でやると埃が出るので、手で鋸を挽いた。その時、掃除機で出るおがくずを吸い取りながらやる。橋台はぴたりと嵌まった。計算通りで助かった。線路の上に敷いてある黄緑色の合板は、その上で作業する時の足場板である。

 道床を延長するが、全体を見通して不具合の無いように行う。橋の上だけが長い枕木になるように調整し、仮固定する。枕木を糸で縛り付けるのだ。
  
 すべての部材が予定通り嵌まった状態で、遠くから見て曲率が一定であるか、確認する。その後橋台、橋脚の位置をマークし、すべて取り外す。

bridge construction (2)bridge construction (5) 2日目は橋脚をネジ留めする。地震の時にこれが動くと大変な被害が生じるから、接着剤を塗って、裏からネジで締める。
 ネジを締める時には、動かないように、最大限の錘を載せておく。ネジは下穴をあけてから差し込む。


2018年05月16日

節電

skelton 3時間というのは材料を切り始めてからの時間だ。工作機械を駆使して最短で作る。ハンダ付けの作業中、ハンダごてを休めることはほとんど無い。流れ作業で作る。薄板工作は久しぶりで、調子よく進んだ。ヤニの入っていない糸ハンダの短く切ったものを大量に用意し、所定の位置に置く。

 ハンダがしみ込むので、キサゲ作業はほとんど必要を感じない。こての先がいつもハンダでぬれていて、酸化被膜ができる暇がない。片方をハンダ付けするのに15分くらいである。 
 速く作るということは節電でもあるのだ。


 ハンダは 約50 g使用した。全ての接合面には、隙間なくハンダが満たされている。決して錆びることは無い。補剛材に 2 mmの角線を使ったが、その角線が快削でないものが半分あった。切る時に丸鋸の刃が喰い込むから腹立たしい。これは事前に調べておくべきであった。フライス作業時には、ほとんど問題がなかった。

 縦の哨屮譽ぅ垢鰐姪櫃覆里如板にした。端はXにするつもりだ。上部横構は曲げた針金である。この方法は成功で、簡単に橋が捻られる。中心はまだ作ってないが、ネジで高さ調節ができるようにする。簡単な構造である。

moving bridge 仮にピットに置いてみた。高さ調整をするが、とりあえず何か置いて支えてみた。回転軸が通る穴が丸見えである。何かで隠す必要がある。円錐面を持つ円盤を作って嵌めてみよう。
 木製は作るのが面倒だ。金属製が楽だが、味気ない。本物は中心部が少し盛り上がって、600トンを受ける大きなスラスト軸受(砲金製)がある。 

 また、色で悩んでいる。黒か銀あたりだろう。

2018年05月14日

手順

 速く作るには、作り始める前に手順を確認することが時間節約の第一歩だ。設計には時間を掛ける。

 作業台を広くする。ワークを回転させるものならば、邪魔にならないように周りを整理する。作り始める前に、すべての材料を並べる。ハンダも何を使うか決める。コテか炭素棒かも決めておく。

 工具を使用手順の順序に並べる。刃物の切れ味を確かめる。工具が揃っていない時は着手しない。作業中ものを探すことが無いようにする。

 部品をいくつ作るか計算して、プラス2個作る。多くても少なくても2個余分に作ると助かることが多い。今回は54個の補剛材 stiffenerが必要だから56個作っておく。はめ込む先のアングルの角は甘いので、補剛材の先端には大きめの面取りを施すことを忘れてはならない。多少隙間が空いてもハンダが浸み込んで解決する。

 電動丸鋸で所定の寸法に切って、フライスで補剛材をアングルの厚み分を削る。本物では、さらに平板をその上に固着している。そこまでやっても誰も気が付かないから省略する。
 内部の哨屮譽ぅ垢眈蔑する。捩じれに対する剛性を減らすのが主眼だ。

section 下面の哨屮譽ぅ垢世韻惑い板で作って付けておかないと、回転時にたわんで、ずれが出る可能性がある。
 これで完成だ。台車部分は取付け時に欠き取って高さを合わせる。今作っても仕方がない。

 昔、祖父江氏のところで作業を見ていたが、作業時間を口に出して、必ずその時間で終わるのが興味深かった。失敗がないので、まず間違いがない。こちらは素人なので、失敗の復旧時間が多かった。
 祖父江氏は、
「失敗だと思ったら、捨てちめぇ。迷うことなんか、ねえんだよ。」
と言った。直すより作ったほうが早いのだ。最近それはつくづく感じる。ゴミ箱には、失敗作が無造作につっ込んである。それは金属回収業者のところに行く。叩き潰してから持って行くのだ。


2018年04月16日

続 軌框

tie lining-up jigremoving from jig すべてのキャットウォークの板を貼ってから、ジグを裏返し、枕木の安定のために貼ってあったマスキング・テープを剥がした。枕木を長い定規で押し込んだ瞬間に全ての枕木が外れた。肉を盗んだ効果は絶大である。

trimmed 直径は 900 mm(43.2 m) であるから、コンパスでけがいて角を切り落とす。cab (運転室)の位置を写真、図面等から確認し、追加のキャットウォークの材料を確保する。キャブ前のプラットフォームはかなり広い。 

 キャブの設計をした。UPの写真等から判断して、相当の大きさにした。木造かと思ったが、金属製のようにも見える。戦争中は真っ黒だったが、戦後は貨車のような茶色または赤になっているものが多い。どういう訳か、屋根はアーチになっている。

 操作盤は単純で、電車のマスコンのような形をしている。三相交流電動機のスター結線とデルタ結線を切り替えているようだ。それぐらいしか操作する物はない。ブレーキもなく、非常時は逆ノッチを入れたりしたのだろう。

 車輪は8個にして、2個ずつイコライズする。中心と合わせて5点支持だ。橋の構造体を薄い材料で作って捩じれるように製作する。そうすると回転時に、動きに落ち着きが出るはずだ。

2018年03月29日

端数処理

 Fortyniner は1939年頃、毎週日曜日の朝10時にシカゴを出て、火曜日朝の10時過ぎにサン・フランシスコに到着する特急だった。もちろん蒸気機関車牽引だ。一時期、流線形の機関車が充てられていた。

 たまたま、この2輌の詳細な図面集を持っている。それによると窓幅は 2 ft 8-1/2 inという数字が良く出て来る。(2 + 8.5/12)x 304.8 ÷ 48 =17.1979 mm となる。これをそのまま使うわけにはいかない。
 祖父江氏はすべて 0.5 mm 刻みで図面を描いた。
「なーに、人間の眼は0.5 mm以下は分からねえんだよ。0.2とかの数字を入れると大変だし、無駄なんだよね。」

 この話をすると、ムキになって、
「僕は0.5と0.6のドリルを眼で識別できる。」
と言う人もいたが、それはできて当然だ。1割以上も違うのだからわかるだろう。
 ここでの問題は、20 mm位の大きさのものに0.2 mmという数字を、足しても足さなくても、見た目にはまったくわからない、ということである。0.4だったら0.5にし、0.8だったら1とすればよいのだ。工作上もそのほうがずっと楽である。

 全部の数字を0.5刻みで出して足し算し、全体の寸法があっているかを確認する。たいてい 1.5 mm 程度狂っているから、どこでごまかすべきかを決める。対称性のある場合は対称を保つようにごまかす。
 窓の角は丸いから、その丸味のエンドミルを持っているかどうかを確認する。側板は所定の幅で大量に切ってあるから、それをジグに挟んで窓を切り抜く。DROあればこそである。あっというまに多数の窓を切り抜いてできあがりだ。

 同じものが多数あれば、レーザのお世話になるが、1枚きりならDROが早い。  

2018年03月11日

続 旋盤のカスタマイズを終了

lathe customized 後ろの切粉ガードは高さが足らないので、合板を継ぎ足した。その時横に延長して、回転するコレットホルダを付けたのだ。コレット群は、手の届くところにあれば探す手間が減る。結局、この旋盤はER25コレット専用機となった。貫通穴が要らない時は鋼製引きボルトで引いている。手前に置いてあるのはコレットの締め外しに使う工具である。28.5 mm(1-1/8インチ)のスパナがなかったので、このモンキィ・レンチが常備品になった。長いので楽である。

 切粉ガードの中ほどに棚を付けて、QCTPなどの部品を置く。アルミのアングルで手前に落ちないようにしている。左右は解放で、飛び込んだ切粉を掃除しやすいようにした。

 10mmの厚肉パイプを 4つ、旋盤で挽いて切断し、ブラス板にハンダ付けした。各種の工具を挿すようにしたのだ。剥がれては困るので、銀ハンダで付けた。融点が高いが、ガスバーナで焙ればすぐである。

 すべてのハンドルを取り替えた。オリジナルはガタガタの細い回転ツマミであったが、正確に廻そうと思うとある程度の大きさが必要で、丸味があったほうが良い。M4のネジを M5に広げ、新しい回転するものと取り替えた。ハンドルの丸味は大切である。

silver bearing solder 銀ハンダについて質問を戴いている。これは銀を 4 %含む無鉛ハンダであって、融点は約 240 ℃ でやや高いが、硬い。また、引き剥がしにくい。アメリカ製であるが、同等品は日本でも売っている。筆者は無鉛ハンダは好きではない。流れにくいからだ。強度を要求される場所に使う。
 
 日本ではオーディオ用として暴利で売っているようだが、効果はあろうはずはない。鉛ハンダで十分である。
 
 通販で買うのが楽だ。銀ハンダは高価であるが、本当はそんなに高いはずがない。銀 1 g は数十円なのだ。模型屋で売っているロストワックス部品の方がはるかに高価だ。           

2018年03月07日

フライス盤のカスタマイズを終了

 フライス盤の補強をした。

 この機械はコラム(縦の柱)が左右に倒れて斜めの切削をすることができるという、あまり聞かない不思議な構造を持っている。本来はワークを傾けるのが筋だ。批判を浴びて、直角固定のコラムを持つように変更になったようだ。

reinforcement この機械は傾ける機構のせいで、コラムが弱い。根元の剛性が足らないのだ。一番楽な補強は根元の部分に鋼製のアングルをネジ留めすることだ。大げさなものを考えていたが、スティールの肉厚アングル小片を見つけたのでネジ留めしてみた。ネジを締めた状態でやや大負荷の切削をして、途中で緩めた。切削痕を見ると、締めてあるときは、無い時に比べるとずっと良くなっている。測定器がないので手触りだけだが、凹凸が2/3以下になるような気がした。

 エポキシ樹脂を塗って、日本製のネジで固く締めた。これ以上のことは望まないことにする。ブラスの切削が主で、Φ6 以上の刃物は使わないから、これで良しだ。

customized milling machine 切粉が前に向かって飛んでくるのは避けたいので、1 mm アクリル板を使った防塵窓を作った。自在のホルダで位置調整できる。
 フライス盤のカスタマイズは、これにて一応、終了である。



  先回のお答えが少ないが、今のところ、すべて正解である。


2018年03月05日

タッピング

 最近は細いメネジを立てることから遠ざかっているが、タップを入れてある箱から、こういうものが出てきた。

tap holders 左が商品のオリジナルの状態である。右は直角に出た部分を打ち抜いたものである。細いタップを把持して回転するのであるが、左の状態のものはタップをよく折る。数本連続して折って、気が付いた。



 この横棒は無いほうが良い。人間の手は点対称にできていない。親指が2本ある人は良いが、普通の人はそうではない。この横棒にほかの指が引っ掛かる。筆者の経験では中指が犯人である。引っ掛けると、貴重な細いタップがぽきりと折れる。

 細いタップは高いので参ってしまう。先の方が折れただけなら、旋盤のチャックに銜えて、手で廻しながら砥石で磨って再生する。もちろん砥粒は受ける。
 折れた先は喰い込んでいるから、ステンレス塩水漬けで2日掛かって溶かす。多大な損失だ。

 横棒を抜くと、殆ど折らなくなる。細いタップ立てには力は要らない。下穴を多少大きめにすると楽に切れる。油を付けるとさらに楽になる。この2つを守れば、タップを折ることはない。筆者は小型電動ドリルの先に小さなチャックを付けて切ることもある。1.4 mmなら一瞬である。電動ドリルはしっかり保持して、即座に逆転する。意外に簡単である。ガラも使うが、電動も良いものだ。小型の自動逆転のタッピングマシンを作れないか検討している。細い電池式のもので十分だから、過電流を検知して逆転すれば良い。H5氏は、自動ではないが、細いタッピング専用機を作られた。非常にうまく作動するのを拝見した。

 もちろん、数が少なく、板が薄ければ、回転ヘッド付きのピンバイスも楽で良い。


XX2 ところで、これは何だろうか。丸い部分は直径 35 mmほどである。長さは 140 mm ほどである。スティールで作りたかったが、良い材料がなかったので、とりあえずブラスで作った。ネジは、M10-P1.5 である。久しぶりに太いネジを切った。

2018年03月03日

脱線

 脱線と言っても線路の上ではない。ターンテイブルの駆動部分にある集電用レイルから、集電車輪が脱線したのだ。うっかりそのまま廻したので、レイルは外れ、車輪が横に押されてばらばらになった。大事故である。完成してからでなくて良かった。

 原因は円盤を載せて組み立てる時、車輪が外れたまま、はめたのだろう。脱輪したまま回転させたので、レイルが外れ、車輪およびテコが壊れた。
 車輪幅が4 mmしかなかったのは間違いであった。精密に作ってあるから脱線しないはずだったが、組立て時のことを忘れていた。脱線はありうる。

electrical pickupsturntable disc すべての集電装置を外し、作り替えた。車輪幅は11 mmとした。レイルは細かく補強を入れ、ハンダ付けの数を3倍にした。もうこれで壊れることが無いはずだ。
 集電車輪ではなくローラになった。レイルとの接触痕は中心部につくから、問題は起きないだろう。回転させると6個のローラが廻る。抵抗はかなり少ない。

 ターンテイブルは、大きな精密機械であって、作るのは大変である。据え付けをするには3人がかりで支えなければならない。
 基盤は24 mmの合板、ディスクは15 mmの合板で作ってあるが、これだけ大きいと多少撓む。撓まないように補強を入れることにした。チャンネルを熔接して付けることになるかもしれない。回転部の中心は、スラストベアリングを追加することにした。


2018年02月27日

職人との会話

 どうしてそんなに職人と親しくなれるのか、という質問があった。

 一つにはそういう時代に生きていた、という運の良さがあった。住んでいるところが町工場がたくさんある地域であったこともある。友人の家がそのような仕事をしているところもあった。
 中学で技術家庭という時間があったが、授業はつまらなかった。教師が分かっていないことが、はっきり分かったからだ。旋盤のある工場で窓の外から見ていると、中に入れてくれて触らせてくれたし、職人芸を見せてもらった。

 そういう時に、「この仕事をやりたい」と思っていたから、それを口に出すと一生懸命教えてくれた。フライス番は切粉が飛び散るので、飛ばない方向からしか見られなかったが、すごいものだと思った。仕事が速いのだ。父に聞くと、「セーパー(型削り盤)は刃物が一つしかないが、フライスはたくさん付いているからな。」と言う。それはそうだが、あの速度で焼けた切粉が煙を上げて飛んでいくのは凄い眺めだった。超硬の刃というのも初めて見た。

 旋盤とフライスで家が建つほどの金額だと聞いたので、自分で趣味で持つことはできそうもないと思ったが、のちにアマチュア用のものがアメリカ、イギリスを中心に出ていることが分かった。

 様々な分野の職人と話をするのは楽しかった。図面を描いて注文すると、面倒そうな顔はするけど、受け取りに行くと得意満面で、腕自慢する。その自慢を良く聞いて、さらに面倒な注文をする。だんだんとエスカレートするのが面白かった。職人は学校には行っていないが、知識がある人が多かった。父は、
「分からないことは、工場に行って職人の頭に聞くんだ。賢い人が居るからな。」
とよく言っていた。
 現場でなければ分からないこともあるのだ。本を読んだだけではできない仕事だ。まさにプラグマティズムの世界である。 

 祖父江氏と知り合ったのはその頃で、模型職人なのに機械工学の基礎を完璧に知っているのには、驚いた。そういう人は見たことが無かった。
「14枚以下の歯車は、歯車じゃねえよ。」
 この言葉が模型職人の口から出るとは思わなかった。すっかり参ってしまって、通うようになった。

2018年02月19日

集電装置

electrical pickup このところ、集電装置を作るのに忙殺されていた。転車台が回転すると、DC回路は途中で極性が反転するが、DCCはそのままである。照明は、電源とは無関係に点滅させたい。場合によっては人形に旗を振らせることもできるようにしたい。


Lionel collector 集電レイルは5本ある。回転の抵抗はなるべく小さくしたいが、確実な集電を期したい。いくつかの方法で実験をして、力学的抵抗の小さい物を採用した。それはライオネルなどで使われている、回転ドラムである。
 ライオネルは焼結合金を使っているようだが、バネが強く、摩擦抵抗が大き過ぎる。
 バネは縮んだ時と伸びたときで、接触圧が随分と異なる。いつも同じように接触させようと思うと、よほど長いバネを用意しなければならない。

 しばらく前、軽井沢の駅前で草軽の電気機関車を見た。集電装置は錘による上昇である。それを見て閃いた。コンプライアンス(追随しやすさ)は小さくても良いので、この錘方式を採用した。錘は 10 g であるから、接触圧は 0.1 N で一定とみなせる。
 廃材を使っているので、部品が不揃いだ。誰にも見えないところだから気にしないことにしている。ただし、軸受等は機械加工して寸法は同一である。

 錘と言えば、TMSのHOの記事で、先輪や中間台車に錘を付ける記事があった。あれはまずい。HOといえども、走行すれば線路の不整で車輪が飛び上がる。軸重という言葉があるので、重さを掛ければ良いと思っているのだろう。慣性質量があるものを、動く部分に載せるのは間違いだ。いわゆるバネ下質量の問題である。脱線機を押しているようなものだ。止まっている時と走っている時では、全く異なる様子を示す。

 軽くバネ圧着するのが一番良い方法なのだが、その種の間違った記事はよく見た。走らせていないから、気がつかないのだ。バネにすれば、走行音もずっと良くなるのに。
 Oスケールで錘を載せると、速度が大きいので、たちまち脱線だ。しかし、この転車台は極めてゆっくり廻るので、錘方式でも十分に不整に追随する。

electrical pickups 集電レイル間隔は 30 mmであるから、集電子は千鳥配列にした。同一直線状にはないから、微妙に傾けて接線方向に向けてある。すべての可動部は、撚り線で結んで接触抵抗を低減している。

 これらの写真は2週間以上前のもので、その後線を1本増やす必要が出てきて、5本になった。

2018年02月09日

既製品のダブルスリップ

 もう一つのアイデアを紹介する。これは所属クラブの大先輩の杉山洋二氏からお聞きしたことである。

 シノハラがダブルスリップを出している。杉山氏は買ってみて走らせたのだが、全く駄目でことごとく脱線する。ゆっくり走らせても、脱線するので、じっくり観察したそうだ。

 細かいレイルが、微妙な量、上下していたのだそうだ。要するにすべてのレイルが同一平面上にはないのだ。そこで氏は、飛び出しているものをヤスることにした。定規を当てて、出ているところを削り始めたのだが、とても難しい。そこで、大きな油目のヤスリを全体に当てて、数十回軽くヤスったのだそうだ。
 すると、出ている部分が完全に削れて、低い部分と同じ高さになった。車輌を高速で走らせても、全く脱線しなくなったという。先日、M氏のレイアウトでそれをお伝えしたら、早速試されて、快調になったそうである。 

 杉山氏は、
「メーカーで、出荷前に大きな定盤上にサンドペーパーを貼って、その上にダブルスリップをうつ伏せに置いて、ざっとヤスればすぐできるのにね。」
とおっしゃった。その後数十年経ったが、目立った進歩はないようだ。

 筆者が作るダブルスリップは、それをお聞きして、レイル表面の整列には気を遣っている。

 杉山洋二氏はTMSの100号時代あたりから載っている電車模型の大家であった。近鉄を1/80、18 mmゲージで作られた方である。

2018年02月07日

sound cam

 先日クラブの会合で披露したところ、評判の良かったアイデアを紹介する。

 蒸気機関車のサウンド装置には、ドラフト音を動輪の回転と同調させるために、動軸にカムが入れてある。このカムを入れるためには、正攻法としては動輪の嵌め替えをせねばならない。慣れている人には簡単だが、一般的には難しいようだ。

 アイデア商品として、僅かに弾力を持つカムを、開いて軸に無理やり横から押し込むものがある。他に、二つに割って組むものもある。どちらも、そういう部品がないとできない。

 筆者が採用しているのは極めて楽な方法である。クロスヘッドは前後しているので、その前後の死点付近に針金を出しておく。もちろん、絶縁パイプを介して固定する。当たっても抵抗がないように曲がりやすいバネにしておくことが大切である。左右で4点の接触がある。4点も要らないという方は、片方で2点にすれば良い。

 あまりにも簡単で拍子抜けするほどだ。針金は洋白が錆びにくくて良い。線が見えるかもしれないからいやだ、という方は、シリンダブロックの中に入れることもできる。

 この方法は25年ほど前、祖父江氏と話していて思い付いた。氏は早速やってみて、「うまくいくよ。簡単だからいいよね。」ということだったが、注文主から見ると手抜きをしているように見えたらしい。仕方なく回転するドラムを付けていたが、筆者のは、針金接触方式である。誰も気が付いていない。

 このようなヒントは無数にある。Model Railroaderの特集号で”764 Helpful hints”というのがある。楽しい本で、いつも寝る前に読んでいた。類するものは、TMS誌上にもたくさん載っていた。これこそがプラグマティズムである。まともにやろうと思ったら、大変な手間が掛かるが、これでも可能というアイデアを出すわけだ。
 鉄道模型はプラグマティズムの実践の場である。まともに唯一絶対の解を求めていたら、お金や時間がいくらあっても足らない。

2018年02月05日

ER25コレット

ER25 collets and holder 自宅の工作室の抽斗を整理したら、ERコレットのMT2シャンクが出て来た。ER25も1 mm〜16 mmまで完全に揃っている。しかも引きネジはどういう訳か、M10であった。つまり、そのまま使えるわけだ。これを付ければ、引きネジを緩める必要がなくなる。即ち、上に飛び出しているZ軸DROが、邪魔にはならないということだ。

 博物館に持って行って取り付けてみた。40 mm以上突出するので、ワーキングパス(working path)が長くなって多少不利であるが、小径の刃物しか使わないので問題がないかもしれない。ブレが大きければ、元に戻しても良い。エアスプリングの取り付け位置も下げて、動く範囲の邪魔をしないようにした。少々大き過ぎるような気もする。もう少し小さいERコレットがあると短く掴めて良いのだが。
 モータの出力から考えても、12mm径の刃物は使うはずもない。

 新しく来た旋盤の主軸もMT2なので、それに付けても使える。ERコレットなら連続した寸法を掴める。ただ、貫通穴がないと不便だ。

 ER25コレットはどこに仕舞うべきか考えたが、下手に仕舞うと目的の大きさのコレットを取り出しにくい。一覧できなければならない。そういうホルダをブラスの板を切って作ろうと思って居たところ、具合の良いものを見つけた。
 もう少し大きめのR8コレット用のロータリィ・ホルダである。実はR8を入れるつもりであったのだが、オーク材でやや贅沢な専用ホルダを作ってしまったので、行き先がなくなってしまったのだ。

collet holder フライス台の背面壁に取り付けた。3つは余るが、それは大径の16, 15, 14mmのものだから、抽斗に仕舞った。もちろん一覧できるような仕切りを付けた。

 

 道具や部品が一覧できるというのは、時間の節約になる。昔、近所の自動車修理工場に行くと、すべての道具が、壁に絵を描いて、その通りに掛かっていた。あんなことしなくても、と当時は思ったが、非常に理にかなった方法である。

 実は模型の部品もすべて一覧できるように、床と壁に並べてある。床は正月には片づけなければならないが、壁はそのままである。これは便利である。


2018年02月03日

Z軸 DROの取り付け

Z axis DRO フライス盤の改良工事を終わらせておかないと、転車台のちょっとした部品の製作にも支障が出る。切込み深さ方向のディジタル表示器が必要であるが、クイル部分が本体とは別に微妙に回転するのが困ったものである。
 クイル quill とは鳥の羽の軸部分を指す言葉で、要するに中空軸のことだ。電気機関車にもクイル駆動がある。中空軸があって、中で別の軸が回転するようなものを指している。このフライス盤は設計が拙くて、少しだが、上下するクイル全体が廻ってしまう。中央の太いスティールの丸棒が廻るのだ。考えられない間抜けな設計で、廻らないようにするのはとても難しい。

Z-axis DRO3 クイルが回転すると、取り付けたDROが捻じれてしまう。クイル表面の円周上で0.3 mm程度の動きである。当て金を作って、そこに当てて変位を検知しても良いが、仕上面の精度で0.02 mm程度はばらついてしまう。

 支点を遠くに持っていって、微妙な角度の動きの影響を無視できるようにしてみた。長い棒を立てたとして、先端を少し振らせた時、高さが測定できるほど変化するか、を考えればよい。
 取付け位置はクイルの外周上より少し遠いところにある。200 mmの棒の先が、0.2 mm左右に振れると、概算で背の高さは0.0002 mm弱低くなる。DROは0.01 mmの差を拾うので、全く影響はないと言える。十分に近似は成立しているのだ。
 
Z-axis DRO2 この棒は2x4 mm のブラス平角棒で、左右の剛性はほとんどない。前後にはやや曲がりにくいが、多少は撓むので2x2の支えを入れた。これはよく効くブレイスで、後ろには全く撓まなくなった。しかし左右には自由に撓む。
 落として使えなくなったノギスのクチバシを切り落とし、ネジで留めた。デプスゲージ部分を上にして、ハンダ付けした。あらかじめハンダメッキしておいて、炭素棒で 一瞬でくっつける。ネジの本数を減らして、接着剤で補助している。

Z-axis DRO4 ノギスの切り落とした少しの出っ張りを、フライスで削り出した部品で押えている。下の台形の断面のブラス隗は、その辺にあった切れ端を使っただけで、形には全く意味はない。
 クイルを最大限捻じっても、読みには全く影響しない。それは成功なのだが、上に突出しているので、コレットの引きネジを廻すのが少々やりにくくなった。左手でやれば済むことではある。引きネジを廻さない方法を考えるべきかもしれない。
 一方、短くすると、かえってうっかり引っ掛けやすくなるようにも思う。しばらく考えて、結論を出そう。

2018年01月26日

砥粒

 フライス盤の改良記事中、「砥粒が落ちる・・・」と書いたところ、質問を戴いている。そんなに気にするようなことだろうか、ということである。

 筆者は大変気にする。摺動面がある機械では、摺動面に砂ぼこりが噛むと、たちまち磨り減る。送りネジはもっと気を遣う。

 旋盤工の仕事を見るのは面白かった。子供のころ、近くの工場でよく見ていた。最後にサンドペーパを当てる時に、油を塗った新聞紙をベッドの上に広げて、ホンの少しではあるが飛び散る可能性のある埃を受けていた。新聞紙の裏表は当然区別する。

 その仕事が終わると、丹念に埃を払い、新聞紙を丁寧に4つに畳む。筆者が質問すると、大事な旋盤を少しでも長持ちさせるためには当然のことだと言った。
 自分で旋盤やフライス盤を持つようになってからは、埃が掛からぬように気を付けるし、サンドペーパは極力使わぬようにしている。使うときは習った通り、油と新聞紙で防護し、電気掃除機を持ってきて、発生する時点で吸い取っている。

 職人の仕事は研究すべきなのだが、もはや職人はほとんどいなくなってしまった。旋盤の上で、サンドペーパを無頓着に使う人は、よく見る。やめるべきだと思う。
 筆者の子供時代は、職人たちが働いているのをよく観察できる時代であった。今思えば、貴重な授業を受けたことになる。そういう意味では現代の若者は不幸だ。なんでも教科書に書いてある通りにすれば出来ると思っている。なかなかそうはいかない。正解は、年月をかけた経験からしか得られない。
 Knowledge is from books, wisdom is from age. (知識は書物から、知恵は経験から。 )
 

2018年01月16日

X-1 micromill belt drive conversion kit の取付⑷

belt drive⑺ ベルトを嵌めてみる。横から見て、完全に水平であれば、良しである。張力は1.5 Nほどだ。150 gw程である。強くすると損失が大きく、弱くすると滑り易い。刃物が噛んだ時に滑る程度にすれば良いので、そのあたりはご自分で調節願いたい。
 この写真を見ると、小プーリィが微妙に低い。モータ軸に対してより深く挿さねばならないから、少し削る必要がある。

 回転数は3段階で、無負荷最大値で、3010, 1840, 1020 rpmである。この数値は実測値である。元の状態よりはるかに速くなったから、細い刃物を使い易くなった。

⑻ ガードの内側のスピンドル・ロックを掛ける部分がプーリィに当たる可能性があるので、黒い中空ネジを外し、アルミ部分を0.5 mm程度削り、ロックをやや浅めに留める。これはスピンドルを駆動ユニット床板に対して中心に置いたから起こることである。もし基盤をやや手前に付けたなら、このような問題は起きないであろう。(下から挿すネジが、手前に引張った時、スピンドルのフランジの、両方の孔の手前の縁で当たっている状態なら良いという意味である)

⑼  ガードを下からネジ2本を締めて、固定する。ガードにはスピンドル・ロックが付いている。鋼製のロック機構を考えていたが、径の大きなところで押さえれば、小さい力で済むので、ブラス製部品にした。中にはスティールの棒が通っている。相手はアルミ合金だが、十分持つだろう。ミシン油を注しておくと良い。基本設計は筆者で、造形は任せた。なかなか良いと思う。

 これで機械的には終了で、筆者による組立て時間は、このマニュアルを書きながら、2時間半であった。すべての部品は小気味よく組上げられる。作業を始める時に、工具、材料をすべて用意しておくのが、時間節約の基本である。
 キィは使っても使わなくても良い。ただ、キィを使うときはバリを取って、するすると入るようにしておく必要がある。引っ掛かるようでは分解ができない。キィ使用の時は、一般的には軸方向の抜け留めが必要で、軸にスナップリング等で留めねばならない。それを使わないようにするためには、ネジでキィを押し付ける必要がある。ブラスの小片を使うときは、軸のキィ溝にそのブラスが喰い込むようにしている。


2018年01月14日

X-1 micromill belt drive conversion kit の取付⑶

installing motor mount⑹ モータを取り付けたモータ台を本体に組み付ける。ネジの組み立て手順は、この写真を参考にする。黒い大きなネジを締めて、ベルトを掛けた時、動かなければよいのだ。向かって左には、赤いファイバ製のワッシャを噛ませ、適度な締付トルクを与えながら、袋ナットを被せてロックナットにする。ブラスのシムには潤滑油を一滴落としておく。右の手で締めるネジには、大きな金属製ワッシャを挟む。

⑺ 紫の↑はガードがクイルに当たりそうで削ったものだ。実際は当たらないのだろうが、見掛け上、気になるので1 mmほど削った。

⑻ 赤の←の、コレット引きボルトを少し削って、細くした。寸法があまりにもぴったりで、締めると抜けて来ない。ということは締付トルクがかなり無駄になる。後で引抜く時も、喰い込んで面倒である。旋盤で0.05 mm削ったら解決した。
 dressing pullbolt headこの種のガタは、仕事を早く進ませるために必要なガタである。こういうところは、中国製らしい。経験がないのでわからないのである。薄くグリスを塗っておくと、締め易い。
 この引きボルトはM10である。筆者はインチサイズのMT2コレットをかなり持っているので、それ用の引きボルト(3/8”、約9.5 mm)を作る。普通の長尺の全ネジにナットを熔接して削り落とせばよいので簡単にできる。何本か作っておけば欲しがる人もいるだろう。

 それはそうと、旋盤の心押台延長の左ネジを欲しい人がかなり居る気配だ。筆者はU氏に作って戴いたのだが、同じ方法で作るのは大変である。専用の左ネジM10-P1.0のダイスを買えば訳なくできる。これも筆者の旋盤上で、ダイスホルダを使えば、あっという間にできるだろう。一人で買うと高いものだが、多人数で割れば、どうということもない。
 もちろんその後の加工はご自分でやって戴く。材料はS45Cだから、卓上旋盤では出力不足になりかねない。手回しクランクでやるのが良いだろう。 
 希望者がいらしたら、コメント欄で<私信>として連絡されたい。数がまとまれば動き出してみよう。

2018年01月12日

X-1 micromill belt drive conversion kit の取付⑵

brass shim 向かって左の円柱上端にはブラス・シムが入っていて、0.050 mm低い。問い合わせたら、「そのようにした」と言うのだ。こちらの図面には描いてなかったが、摩擦が大きすぎるので、たまたまあった0.050 mmのシムを切って挟んだと言う。なかなか気が利いている。注油しない人が多いので、減らない工夫だ。右の方は見るからに摺動面で、減りを気にする人は多いが、ピヴォット側は放置ということが多い。アルミ合金は磨り減りやすいので、このような配慮が必要なのだろう。勉強になった。

⑴ まず手前のガードと角材を外す。ネジは固く締まっている。これを取っておかないと、あとでベルトがはまらない。 

⑵ モータのギヤを外して捨てる。新しいプーリィの径の大きい方を上にして、飛び出しているところが、モータのボールベアリングのインナ・レースに当たるように嵌め込んで、様子を見る。この時、シャフトにはリング、ワッシャなど、何もついていないことを確認する。小プーリィの飛び出しているところを0.8 mm削り落とす。削るのは、旋盤が一番良いが、サンドペーパ上で回転させながら削っても何ら問題ない。この操作によって、小プーリィは0.8 mm高い位置につく。面取りを施し、孔の中をよく掃除する。 キィ溝にネジ穴を合わせて、完全に奥まで差し込み、穴からブラスのピン(短い方)を入れ、ネジを締める。元のキィは使わない。ミシン油程度の油を塗っておいて組むと楽である。
 要するに、ベルトは水平でなければならない。

⑶ モータ台にモータを置き、線の取り出し方向を考慮し、位相を決めて固定する。プーリィを傷つけないように、箱に入れて保護しておく。ネジは元のモータ取付け用を用いる。

installing base⑷ 下から駆動ユニット床板を留める。付属のM6ネジを 用いるのだが、位置が決まりにくい。手前に引張りながら、側面がベッドと平行でなければならない。半締めして、プラスティック・ハンマで叩き、細かく移動させて本締めすると良い。外すことは無いと判断すれば、少量の接着剤を塗っておくと良い。将来ビビリが発生することが無くなる。
 このM6のネジ(5.88 mm)は、スピンドルのフランジの孔(6.44 mm)に比べて小さい。ガタの中で、基盤を最大限手前に引張った状態で締める。

fixing pulley⑸ 大プーリィをスピンドル(クイル)上方から挿す。下まで完全に落とし込む。この時、駆動ユニット底板からプーリィ下面まで、1.3 mmのクリアランスがあるのが望ましい。0.5 mm板と0.8 mm板を重ねて挟んでおいて、引き抜けばよいのだ。もっと低くしたいが、大プーリィがガードの角材に当たる。

 せっかくキィ溝があるので活用した。キィの幅はぴったりだが、高さ(法線方向)がやや高いので、ベルトサンダで削り落とした。プラスティック・パイプ(竹筒でも良い)を嵌め、プーリィをハンマで軽く叩いて沈める。所定の位置で、ネジを入れて締め上げる。キィを使ったので、ブラスのピンは使わなかった。プーリィを落とし込む時、ハンマで不均等に叩くと、クイルが曲がる可能性があるから、必ずパイプ状の物を介して叩くようにする。仕上がりは良く、簡単に入るようになっている。精度は十分だ。むしろ、クイル表面のざらつきのほうが気になった。細かいサンドペーパで擦って、メクレ等を取り除き、洗浄スプレィで洗ったのち、ミシン油などを塗って嵌めると良い。サンドペーパを使うと砥粒が落ちるので、孔をあけた新聞紙を被せて、全体を保護し作業終了とともに掃除機を掛ける。

2018年01月08日

X-1 micromill conversion kit 到着

conversion kit 年末に発送したと連絡があったが、正月を挟んだので、少々時間が掛かった。DHLで 名古屋空港NGOの倉庫までは来ていることが分かったが、通関に手間取ったようだ。関税は十分に払うからと言ってあったのだが、安くしてくれたようだ。

 綺麗な仕上がりで良かった。スピンドルのロックも思うような構造にしてくれた。ネジはドイツ製だと言っているから、信用できるはずだ。
 ベルトは三ツ星の高級なベルトで、これは日本で調達した。不思議なのは外地の方が安いのだ。これを取り寄せてくれた親しい工具屋のK氏は、「大量だったら向こうから仕入れるべきだな」と言う。特別価格にしてくれても、1本1060円だった。向こうでは普通に一本買っても900円だという。在庫がなかったようなので日本で調達した。

 どういうわけか、英語での説明書を入れてくれたが、文法的ミスで理解不能な点が多い。このブログで取り付け方をお知らせするのが一番簡単だろう。
 
 これであの騒々しい運転音と、歯車駆動の不安が一挙に解決するのなら、有難いと思っている。実は2回喰い込ませている。モータが非力で助かっているが、怖い話だ。プラ歯車はゴミ箱に叩き込んだ。

 実は珍しくインフルエンザに罹り、寝込んでいる。発送は少し遅れるかもしれない。

2018年01月02日

続 転車台インデックス装置の完成

 いくつかお答を戴いている。ほとんどが正解である。ヒントを目ざとく見つけられて、完璧なお答の方もある。一方、いつもコメントを戴く方々からは、お答がなかった。 

 正解は高粘度シリコーン・グリースを用いた粘性結合継手である。信越化学がいくつかの粘度のものを出している。中粘度のものが良かった。これはトイレの蓋のヒンジなどに使われているアレである。ゆっくり閉まるのは粘性による。写真の中に信越化学の丸い瓶があるが、それがヒントである。ShinE…という文字しか見えないが、分かる人にはすぐ分かっただろう。
 この種の継手を鉄道模型に使ったのは、これが世界で最初の例ではないだろうか。MRに投稿してみようと思う。作るのは簡単で、消耗せず、半永久的に持つ。

 シリコンsiliconとシリコーンsiliconeは異なる概念を指す。前者はケイ素の単体あるいは元素を指す。例えば、シリコン整流器という言い方をする。後者はケイ素と酸素が交互に結合した骨格を含む合成高分子(シリコーン樹脂)を指す。間違える人は多い。

 さて、円柱とそれにかぶさる円筒の隙間を変えて、様々なテストをした。隙間が0.1 mmでは狭すぎる。0.2 mm弱が一番良いことが分かった。長さは必要とされるトルクに応じて調整した。廻していると温度が上がるかと思ったが、出力がせいぜい 0.3 W 程度なので、30分くらい廻っていても温かくなる兆候は見られなかった。ある程度の推力を生み出して停止していても、何の問題もない。バーサインの分だけ押し戻されても、推力が増えることはない。バネを介して押すよりはるかに確実であり、利点が多い。
 この装置には3つの粘性継手が使われている。作動が穏やかである。よく見るソレノイド等のガチャガチャとした作動ではないが、正確なインデックスが可能である。ずれても戻せるところが面白い。


2017年12月25日

gusset plate を貼る

steel bridge ガセット・プレートを順次貼っている。意外と時間が掛かるものである。リヴェットを打ち出したものをシァで切って、叩いて平らにしたものを貼る。接着剤はスーパーXである。
 薄く塗っておいて、両方になじませ、マスキング・テープで仮留めする。位置を確認してから、軟らかい木材を当てて締め付ける。中の方まで固まるまで、1日以上掛かるようだ。
 クランプを外して次の列を数枚貼る。これを繰り返してようやくここまで来た。あと少しである。

 見えるところは全て貼りたい。内側も大きな面積のところは貼りたくなってきた。今ガセット・プレートを増産中である。

 塗装を考えている。色はどうすべきか。黒か銀かそれとも濃いグレイだろうか。レイアウト全体が薄いグレイであるから、突出した色は避けたい。


2017年12月17日

gusset plates

 鉄橋の工事が停滞していた。ガセット・プレートの加工が遅れていたからだ。いつもお手伝い戴いているクラブのN氏が見かねて、代わりに作ってくださった。

LED lightingLED lighting2  工具一式をお渡しして、お願いした。リヴェットは下から押し出す方式である。型紙の大きな丸にダイをあてがい、どの方向からも白い部分が見えなくなった時に打てば、所定の位置に押し出せる。それを手前以外に向こうからも見なければならず、数枚を作ってもう体力が無くなったのである。目の良い人でないと難しいと思っていた。若い人が集まった時にお願いしようとも思っていたのだが、N氏は、LEDで照明を当てながら鏡で見るという方法を考え付かれたのだ。三方から同時に見られるので、仕事は大幅に早くなったそうだ。実際にはLEDはほとんど使わず、蛍光灯の光だけで十分だったとのこと。

gusset plates すごい数のリヴェットを短期間で打ち出して戴いたので、早速貼り付けに掛かっている。この写真の下が型紙を貼った物で、上はできあがりを裏側から見たものである。


 それをシァで切り落とす。リヴェット打ち出しで、全体が反っている。それを修正するために、金床の上でゴムハンマで叩く。満身の力を込めて一発で仕留めるのだ。リヴェットの裾野は平らになり、全体も平面になって落ち着く。

 貼り付けるべき場所を確認する。これが意外に大変な作業なのである。よく似たものが多い。型紙は両面テープで貼ってあるので、きれいに剥がして、接着剤で貼る。マスキング・テープで仮留めしてから、軟らかい木の板を挟んでクランプで締め付けると密着する。

 N氏が述懐する。子供のころはお金がなかったし、腕も知恵もなかった。ただ視力だけは十分にあった。今は視力だけがないと。
 本当にその通りだ。筆者は、若い時はとても視力が良く、両眼とも2.0であった。ところが現在はかなりの遠視で、眼鏡をいくつも首からぶら下げているが、それでも足りない。  


2017年12月15日

フライス盤の制御回路

 このフライス盤は直流モータで駆動されている。マグネットモータである。困ったことに、磁束が漏れている。モータ側面に鉄片が吸着されるのだ。磁束漏れは出力低下の原因である。いずれ厚肉鉄パイプを被せてみよう。


motor controlto fit into the box 制御装置はこんな形である。寸法を測って金属製の箱を買ったが、入らない。箱の前後の妻板が10mmほどオフセットしていて、奥行がないのだ。

ventilation こういう時はいつもの手を使う。妻板に孔をあけて、飛び出させて、それを別部品で覆う。発熱する部品なので、換気用という大義名分も使える。 

 アルミ箱の片方の妻板を、何度か曲げ、疲労させて折り取り、それを後ろに持って行く。ネジ留めしても良いが、接着でも良い。操作盤は手前に持ってきて、底面に接着する。5 mmのベークライト板で嵩上げすると、操作パネルの下端の高さがちょうどよくなる。

nibblerswarf ゴミ箱の上で、電動ニブラ(nibbler)で孔を開ける。切り粉は燃えるゴミでよい。アルミニウム屑はよく燃えるからだ。この程度の切りくずなら、回収する価値はない。


 この道具を使えば、切るのは簡単である。意外とこれを持っている人は少ないようだ。筆者は、エアコンのダクトを構成する薄鉄板をくりぬく作業をすることがある。それには便利な道具であって、安いものだ。これは日本製である。切粉はこのような三日月状である。

 電気ドリルに付けるアタッチメントとしても売っているが、これは専用機である。
 0.8 mmの鉄板でも簡単に切れ、切断速度が大きいので楽である。アルミなら、紙を切るような感じで切れる。直線を切るときはガイドを取り付けてそれを添わせて使う。円を切るときは半径を決める定規を付ける。
 機関車の床板に使う1.5 mmのブラス板も、大きな板から切り出せる。切り口は多少凸凹しているのでヤスリを掛ける必要があるが、大した作業ではない。


2017年12月13日

フライス盤を分解する 

 来週あたりにベルト・ドライヴが発送されるようなので、下準備を始めた。

motor gearBlogPaint モータを外してみたら、とんでもないことになっていた。樹脂製歯車が少し下がって(抜けて行く方向)、絶縁用のプラスティック板に当たっている。摩擦熱が発生して、ギヤが変形を始めていた。キー溝がすでに30度ほど回転している。温度が上がって、クリープが起こったのだ。その原因は、ギヤを留めるスナップ・リングの欠落である。もともとなかったのかもしれない。中国製だからとは言いたくないが、ひどいものである。この状態でしばらく使うと、ギヤの中でキーが回転していくのだろう。一周するとどうなるのだろう。 

disassembling gear traindisassembling gear train 2 スナップ・リングを専用工具で外す。めったに使うものではないが、これが無いと作業が困難だ。ギヤを1枚外してみると、その先は鋼製のスリーヴ(ギヤ間のスペイスを稼ぐもの)と、もう一枚のギヤがある。これが固くて取れない。嵌めあいが、きつ過ぎるのだ。


gear pullermill spindle 仕方がないので、ギヤ・プーラを持ってきてセットした。プラスティックの歯車に爪を掛けるのはためらわれたが、壊れても良いのでそうした。この種の道具は、ドイツ車と米車とを持っていた時の整備工具である。よく壊れたが、すぐ修理できるので、部品とパーツを沢山保有していた時代があった。懐かしい思い出だ。
 上端のネジをレンチで廻すと、すぐ抜き取れた。 外すとこんな様子だ。フランジにバカ孔が2個ある。ここにベルトドライヴを付けるのだ。

gear case 箱は外してみるとこんな形である。これだけで、2 kg弱もあった。熔接はへたくそで、ひどいものである。鉄クズ置き場に直行だ。

2017年12月11日

続々 turntable indexing

index roller 転車台のインデックス(割出し装置)は、当初の計画をかなり変更した。楔を差し込む形を考えていたが、ローラ・ベアリングが一つ見つかったので、それを押し付けることにした。そうすればスリットに入らずに滑っているときの抵抗は少ないし、潤滑も要らない。 

DSC_0023 ローラ・ベアリングを収める部分は3 mmの板で作り、軸を真っ直ぐ通すために、縦フライスで孔をあけた。刃が長いものは4枚刃しかなかったので、ドリルで適当に穴をあけ、その後でフライス刃を差し込んだ。一瞬で正確な穴があき、その部分は完成だ。2枚刃なら下穴なしで切り込めるが、4枚刃ではそうはいかない。

DSC_0020DSC_0025 前後に動くプランジャ部分は、当初側面に溝を掘ってボールベアリングを偏心スリーブで受けていた。溝の角にボールベアリングのアウタレースが当たると、いつかは減るだろう。重さを別に受ける必要がある。部品を新製し、ボールベアリングを仕込んだ。簡単な工作だが、機械がないとできない仕事だ。

 真ん中にラック・ギヤをはさんで角棒をハンダ付けする。全く隙間の無い、完璧なハンダ付けをした。ラックの背が低いので、別の角棒で下から支えている。
 このような長いものを付ける時には太い針金を曲げて作ったバネクランプで、全体を締める。ネジ式クランプではハンダが中まで入らない可能性がある。もちろん、接着面はキサゲで刻んで、めくれを付けてある。僅かの隙間をあけておくためである。塩化亜鉛飽和溶液を塗って、ハンダを置いてガスバーナで焙れば、できあがりである。切り口を見ると完全に一体になっている。


2017年12月07日

続 modifying tailstock

 いろいろなところに手を入れた。本来旋盤という機械はそういうものである。買っただけで性能を発揮できるということは無い。使う人が手を入れ、部品を手作りして、はじめて、性能を発揮するのである。この記事の機械はやや凝り過ぎだが、素晴らしいものである。

 大切な点は、スピンドルの精度である。ベアリングのガタがなく、心押台のセンタとぴたりと合えば、まず問題ない。その他の部品は気が済むまで改良していけばよい。改良用の部品は無数にある。昔はそれが何処に売っているのか見当もつかなかった。工具屋に行って聞いてもよくわからない。

 町工場の社長が一番よく知っている。友人の父君には色々なことを教えてもらった。様々な部品も貰って、それを加工して使った。アッと驚くテクニックもあって、勉強になった。
 最近「ミニ旋盤を使いこなす本」久島諦造著 を再度熟読した。ほとんどのことは頭に入っていたつもりだったが、チャックに入らない太いドリルでワークに孔をあける方法には再度驚いた。ゆうえん様が「パズルゲームのようなもので」とおっしゃったが、本当にその通りである。

 模型工作の蘊蓄を語る人は多いが、旋盤を持っている人は少ない。旋盤を持てば、人生観が変わるはずだ。少ない金額で、これほど楽しめるものはない。模型屋に行く回数は激減するだろう。

moving support  写真は自宅の旋盤で、転車台のシャフトを挽いている様子だ。自分で改造した移動振れ止めで支えながら、Φ40の砲金の棒を中グリしている。刃物も自作である。刃先の位置が、振れ止めの位置と一致するところがミソである。写真では拭き取った後でよく分からないが、ワークの外側にはグリースを塗って作業する。昔鉄砲鍛冶に手ほどきを受けたので、中グリは得意である。  
 シャフトは最大限に太くして、剛性を大きくしないと、回転橋の動きが珍妙になる。

2017年12月03日

共通点

 Tortoiseなどは常時通電式である。微弱な電流で動くモータを使っている。所定の範囲を動いて停まると、その先は、直列につながれた抵抗にほとんどの電圧が分配され、モータは単なる電線であるから、熱が出ず焼けない。50年前、父がアメリカ製のエアコンの電動弁をばらして、驚いていたことを思い出す。それは、Honeywellの製品であった。それは、いわば「電気的辷り」とでも言うべき方法である。

 要するに通電しても仕事にならない「辷り」を生じさせて、無視できるほど僅かな発熱を承知で使っているのである。その動作をメカニズムで実現したかった。共通点は「辷り」である。

 モータが動き、ラックとピニオンで所定の位置まで行って当たると、発生する推力によって軽く押し付けられている。
 電力供給が止まれば、逆に押されて戻るようにしたい。機械的辷りを作り出さねばならない。単純な摩擦式ではいずれ壊れる。電気的な処理方法はあるだろうが、筆者の方針には合わない。

 このメカニズムは、様々な図を描いて検討した。ノッチの向きもそうだが、直線で曲線を近似するのをやめて、外側にもう一つの回転するドーナツ状の板を作り、それから内側へトングが出る方法も考えた。しかし、それはあまりにも複雑で、摩擦が大き過ぎる。

 簡単にして、何十年も全く故障なく使える、というものでなければならない。今回採用のアイデアは15年ほど前に思い付いたのだが、なかなか使う機会が無かった。

 さて、どんなメカニズムであろうか。


2017年12月01日

推力を一定にする

versine 転車台のindex(割り出し装置)はnotch(切込み)にtongue(楔状のもの)を差し込んで行う。相手は回転するから、位相差はトングの長さに影響する。
 要するに正規の位置にあれば短いが、多少ずれたのを戻すので、その時にversineが無視できない。僅かな距離だが、それをバネで補うとエネルギィが溜まるから、中心に行きにくくなる。正規の位置から外れた位置の方が、安定だからだ。それではセンタリングが効きにくくなる。

 慣性で回り続けようとする重い円盤のノッチにトングが差し込まれた時、ダンピングが働き、軽くブレーキが掛かることも要求される。別部品としてエアダンパをいくつか作ってみたが、大げさであるし、動きも要求を満たさなかった。
 トングを差し込むにはネジ式、ラック式などの方法があるが、バネを介してモータで押し込むと、エネルギィが蓄えられてしまうのだ。外れた位置から元に戻るときは、復元モータが働くのだが、その時抵抗少なく(多少のダンピングを伴い)所定位置に行って欲しい。軽く、いつも一定の力で、押し込まれていてほしいのだ。この解決法はなかなか難しい。

 これらの諸問題を同時に解決する方法を模索していた。一つにはTortoiseに代表される常時通電式のポイントマシンを使うことだが、これは逆駆動が難しい。トータスのギヤトレインの効率が良くないし、そのモータは普通の有鉄心マグネットモータだからだ。より高効率のメカニズムはできるが、その後の保守などを考えると得策ではない。要するに、壊れようがないメカニズムが必要なのだ。

2017年11月29日

rack & pinion

broken plastic rack 春先に自宅のWashlet(TOTO製)が壊れた。比較的高級な機種(TCF815)で、購入して4年ほどであった。故障ではなく、壊したのである。最低だ。


 使用中に、バリバリメリメリと音がして、ノズルが引っ掛かって止まった。押しても引いても動かない。突き出したままだから、トイレは使えない。仕方なく安物を買ってきて、仮に取り付けた。外したものを営業所に送って修理してもらおうと思ったが、現場での修理しか受け付けないと言う。こちらの都合など全くお構いなしで、取り付けた状態しか駄目だと言うのだ。取り付けられている状況を見ないといけないと言う。
 何が知りたいのかと聞くと水圧、水質、電源、日照の有無、気温、湿度だと言う。すべての正確なデータを測定して送ったが、屁理屈を付けて、「現場で」と言い張る。
 再度取り付けたら、トイレは使えない。滅茶苦茶な方針を押し付けようとする会社だ。出張費が欲しいのだろう。見掛け上の修理費を安くする方便に違いない。押し問答の末、正確な訪問時間を決め、元に戻した。

 当日、修理を見ていたら、内部のノズル繰り出し装置がフレクシブルなラックであって、それが折れていた。疲労したのだ。それはプラスティック(多分ナイロン)のラックの中に編みワイヤを封入したもので、いかにも細い。座屈して折れるのは、当たり前だ。
「なんだ、設計が間違っているじゃないか。」と言うと、修理員は申し訳なさそうな顔をして、「この機種の修理はすべて無料でさせて戴いています」と言う。最初からそう言えば良いのに。リコールの対象であるはずだ。購入者に不便を強いている。
 代替部品はかなり太く、これなら折れないだろうという形であった。座屈発生というのは、設計者にとって最低の失敗だ

 こんな設計はダメである。今回の転車台のメカニズムの設計は、それを見たときの印象が、大きく影響している。


2017年11月27日

続 turntable indexing

ring gear リング状の歯車を作った。もちろん既存の歯車の内側を削ったのだ。ボス付きの歯車のボスを銜えて廻し、所定の半径に中グリをする。
 DROの無い旋盤で、中グリをするのは怖い。うっかり削り過ぎると失敗だ。もう余分の材料は無い。何回も寸法をチェックし、2/100mmずつ削って、滑り込みにする。ボスから切り離した瞬間に、このような状態になる。 これをパイプに嵌めてハンダ付けする。モータでパイプを廻すと、ラックが出入りするのだ。

 ラックによる伸縮はネジ式に比べると利点が多い。ネジは逆駆動ができないのだ。もちろん三条ウォームのように進み角を大きくすればよいのだが、そんなネジを作っている暇はない。ラックとピニオンなら単純なメカニズムだ。ラックは十分に丈夫な太さにして、転がり摩擦で受けている。ガタはなくした。

 今回作っている装置は、すべて逆方向に力が掛かると滑らかに戻る。インデックス(割り出し)の動作で所定の位相で停止するが、制御者の意思が働いていない時は自由に回転できる。制御にはリミット・スウィッチは使わない。スイッチがあると、いかにも機械仕掛けで動いています、という感じを与えるからだ。つまり、玩具っぽい動きになる。本物はとても重いので、カチンカチンと動くことは無いのだ。あたかも人間がそこに居て、動かしているような感じを与えるような設計だ。

 要するに人間が意思を持って押しているような動きである。力を入れて所定の位置に持って行く。そこで力を緩めると、別の力が掛かっている時は、逆に動き始めるのだ。言葉では説明しにくいが、試運転を見た人は非常に驚き、「機械の動きのようには見えない。」という言葉が出た。

 すべての機構は、2度作り直した。

2017年11月25日

セレーション

tailstock 旋盤、フライス盤の整備を続行している。様々な留めネジをレヴァ式に改造している。六角レンチで毎回、締めたり緩めたりするのがとても面倒だからである。
 フライス盤の場合は、その位置にDROを付けたのでレンチが入りにくい。ネジの当たり面が浅いところにあるときは、座面を相対的に近づける必要があり、座面を削った。鉄鋳物だから、簡単に削れる。

locking lever この種のレヴァは作動位置を選んで、一番都合の良いところにネジの位相を決められる。締めるのは角度で30度くらいの範囲だから、その範囲が手の届きやすい向きにあれば、邪魔にもならず好都合だ。

 中のネジ頭の外周には刻みがある。これをセレーションという。綴りは serration である。大昔にその言葉は父から聞いたが、綴りを知ったのは30年ほど前である。語源は、ラテン語の鋸だ。シエラ・ネバダ山脈の Sierra とも関係がある。スペイン語でシエラは鋸、ネバダは雪である。雪の積もった鋸山という意味だ。
serrationserration2 要するにギザギザがあって、レヴァの内側にもそれと噛合う内歯がある。バネで押し付けられているから、それに逆らって持ち上げて位相を変える。ギザギザの歯型は、当然インヴォリュートではない。

 似たもので、スプラインがある。 splineは、軸上で動力伝達を行いながら移動する場合である。様々な歯型があり、最近は多数のボールを用いて滑らかに動くものもある。インボリュートもあるようだが、星型とか、六角とかいろいろなものがある。 
 
locking lever2ZAMAC 最近自宅のフライス盤の留めネジが壊れ始めた。シーズン・クラックである。使おうと思うと、割れて下に落ちている。4個のうち2個が壊れた。力を入れたときに壊れたわけではない。

 中国製だからということもあるだろうが、ダイキャストは信用できないことが分かる。最近の中国製の鉄道模型はどうなるのか。ダイキャスト製はいずれこのように割れてしまうのだろうか。


2017年11月21日

第6章 各種等角逆捻り機構の使い分け提案

(8回連載の8回目)
 最後に、ここまでの考察を通して各機構の使い分けについて考察します。なお、ここでは「ロンビック」を強制的に等角逆捻りさせるリンク機構の代表としています。魔法使いの弟子ヨー軸シーソーの方式もロンビックと同等でしょう。

 それでは、
ロンビックイコライザ(以下
Rh式と略)」
フカヒレイコライザ(同
F式)」
ロール・トーション・バー等角逆捻り(同
RT式)」
ピッチ・トーション・バー等角逆捻り(同
PT式)」
4
つについて考えます。

 Rhは基本的な原理が確立していますし、ガタや弾性変形を伴う動きが無いので、等角捻りを必要とする任意の車輌に搭載できると思います。

 次にFは図3のように斜め軸を回転軸としているので、厳密にはロール以外の運動が含まれてしまいます。そのため、ボギー車の場合、台車の回転に伴って、回転軸と台車ピッチング軸の成す角が近付くと、レイルのピッチングの影響を受けやすくなります。この条件になるのは、全長が短く、車幅の大きい(つまり回転軸がロール軸に対して大きな成す角になる)車輌で、しかも台車の回転角度が大きい、つまり急カーヴを曲がる車輌の場合と考えられます。これはちょうどナローのカブースなどではないでしょうか。このような車輌ではFはピッチングの影響を受けやすいと推察します。

 RTは、既に説明したとおり、軽量の小スケール車輌に簡単に組み込むのに向いていると思います。ボギー車の場合は、台車回転軸がロール以外の動きをしないように、何らかの形で拘束しないといけないでしょう。捩じりバネだけで輪軸を支持するには帯板の使用が有用と思われます。根本的には短編成に用いる二軸車に使用する簡易な方式だと思います。

 PTも前述のとおり、ピッチ剛性が弱いので全長が短い車輌が向いていると思います。あえてピッチングを弱くするのも、動きに面白味を与える上では良いかもしれません。

 最後に、これらの使い分け案を表1にまとめて掲載します。

表1 各等角逆捻り機構の使い分け案まとめ


 

名称

 

提案名

 

原理

 

動作

確実性


工作性(上)

調整性(下)

 

考察結果

ロンビックイコライザ
リンク式強制等角逆捻り全般)

リンクによる
強制ロール等角逆捻り



○〜△

工作が可能ならば全般的に良好

フカヒレイコライザ

上記を簡易化し、
バーサインを、
リンクの小さなガタで
巧妙に吸収



台車が大角度で回転する小型ボギー車には懸念有り

天秤棒イコライザ

ロール・トーション・バー等角捻り

バネ釣合による
ロール軸等角逆捻り


○〜△


小型二軸車などに容易に設置可

90度捻り天秤棒

ピッチ・トーション・バー等角捻り

上記のピッチ軸版



短尺小スケールの
二軸車等に有用



2017年11月03日

続々 micromill X-1 改造

122f43d2 このX-1は、Z軸の移動が重いのが腹立たしい。ヘッド部分の質量は12 kgほどあるのだろう。降ろす時は自重で下がっていくから良いのだが、上げる時は大変だ。ハンドルが折れはしないかと思うほど、重い。その重さを何とかして釣り合わせねばならない。滑車を付けてカウンタ・バランスを付けるのが良いが、埃もつくし、スペイスの問題がある。また、釣合い錘が12 kgもあれば、さらに重くなる。

 筆者の自宅の機械には、オイル入りのエア・スプリングを付け、突っ張らせている。たまたま入手したエア・スプリングがとても具合がよく、全く重さを感じさせない。留めネジを緩めると、指先でヘッドが上下できる。目的のところで留めて、Z軸をゼロ設定すればよい。あまりにも軽快で、それに慣れていたので、今回のX-1の重さには根を上げた。

 モノタロウで一番小さいのを探して、150 N(約15 kg重)というのを購入した。細くて都合が良い。取り付ける場所は垂直に動くところが良いのだが、多少斜めになっていても全く問題ない。ネジを立てて、皿ネジで取り付けた。鋳鉄の加工は楽しい。
 ストロークが70mm程度しかないのだが、ヘッド自身が30 mmほど上下するので、都合100 mm程度動く。これは万力の高さ62 mmを含めても十分なストロークである。
 X-1の購入者で、Z軸が300 mmも動くことを必要とする人は、まずいないと思う。本当はZ軸上下用の送りネジを外して捨てたかった。同時にカラム(角柱)も上の方を100 mmほど切り捨てたかった。送りネジを切り縮め、ハンドル位置を下げれば良いのだが、今回は諦めた。
 
 どちらかというと、下げるのに力が要るようだ。120 N を買えばよかったかもしれない。贅沢を言えば、オイルが入ったダンピングの効くものが欲しかったが、これで十分である。
 この種のオイルレス・ガス・スプリングは消耗品であり、いくらでも手に入るものであるから、安物で十分である。
 
 先回の解答はコメントで発表した。今回の工事にも使用している。また、国内でも類似品が入手できることが分かった。この種の工作をしない人には、理解が難しいかもしれない。皿ネジの心が合っていない状態でネジを締めると、首が疲労してたちまち折れることを経験された方なら、この工具の意味はすぐ分かるだろう。
 このドリル径は3.2 mmすなわち1/8インチである。日本製のものはやや小ぶりである。

2017年10月22日

続 pine wood soap-box car

pine wood car dervy そこにあったどの車も低重心にしていた。それが正しいと信じているのだろう。筆者はコースの出発部分に目を付けた。かなりの角度で持ち上がっている。ある程度進むと平坦になってゴールだ。

 重心が車体中央にあると出発時に稼げる位置エネルギィが少ない。車体後部に重心を持って行けば、持ち上げられる量が大きくなるから、蓄積されるエネルギィが大きくなるはずだ。あまり後ろに持って行くと前輪が浮いてしまって脱輪するから、錘を移動して、重心をホィール・ベースの 4/5 に持って行った。もちろん4つの車輪のうち、最もよく廻るもの2つを後ろに付けることにする。

 次に支給された車輪とクギを使わねばならないから、クギをよく研磨した。そのクギが通りそうなちょうど良い太さのパイプがあったので、タイヤの中心に差し込んだ。友人宅で旋盤を借りて作業したから、心は出ている。釘を挿して、歯磨き粉を入れて空回しした。少し黒い汁が出たところで研磨完了で、よく洗っておいた。
 車輪に自由度があればいろいろな工夫ができそうだが、それは許されていない。重い車輪にすると軸の摩擦が減るが、慣性モーメントが大きくなる。いろいろなことを考えねばならないだろう。

 次の土曜日の朝、子供たちにこれまでのことを話し、組んでミシン油を注した。
廊下で滑らせると素晴らしい走りであった。摩擦を減らすことは大切である。

 午後にボーイスカウトの集会に行って、エントリィした。車体は子供の描いたとおりのややクラシックなフォーミュラ・カァの形で、銀色に塗った。”No.1”と書いたものを貼っておいた。

 新人は順位の低いところから始まる。当初の試合では順当に勝ち進んだ。そのあたりではまともに走らない車ばかりだったので、こちらの性能には誰も気が付かなかったようだ。順当に勝ち進んでベスト8になると、皆よくできた車ばかりだ。

 最終の決勝では、1馬身以上の差をつけて優勝した。2位になった子供が悔しがって、再レースをすることになったが、やはり同じように差をつけて勝った。地区別の大会だったので、ご近所の人たちは大喜びで勝利を祝ってくれた。
 しかし、なぜ速いのかを質問する人はいなかったのが、不思議だった。翌日、大学で親しい物理の教授にその話をすると、非常に面白がって、筆者の戦術を褒めてくれた。
 翌週彼は、「コースの形をどのような形にすると、いちばん短時間でゴールに到着するようになるか」という問題を作って、学生にやらせていたようだ。


2017年10月14日

home-made Set-Tru

How it works 筆者はこのSet-Truが欲しかったが、何年も買えない時期が続いた。仕方がないから作ってみようと、寸法を当たってみた。

 細いネジは、M4くらいの鋼製ネジを使えるだろう。やや太い貫通孔はかなり大変だが、あけられると思った。その場所もないわけではない。

 問題は左のフランジの突出部が小さく、移動ネジが当たる場所がほとんど無いことであった。ネジ移動を諦めれば、コンコン叩いて移動できるから、それで我慢することもできる。

 大真面目でその作業工程を考えていたことがあるが、結局改良工作はせずに、Set-Tru に移行した。たまたまe-Bay で新古品が安く出ていて、競争無しで2万円ほどで手に入ったのだ。しかもアメリカ製であった。運が良かったとしか言いようがない。

 現在新品は、安い店でも10万円ほど出さないと買えないようだ。しかもポーランド製だ。品質は悪くないと思うが、高過ぎる。

 コレット、万力(vise)、正直板等は良いものが欲しい。昔のアメリカ製の新古品をいつも探している。

pine wood 2pine wood 3pine wood ところで、ブラスの材料置き場の敷き板として、こんな物を使っていたのを見つけた。
 30年ぶりに発掘されたのだ。さてこれは何であろうか。鉄道とは関係がないが、アメリカで少年期を送った方ならだれでも知っているだろう。ボーイスカウトに子供たちが誘われたときに、これを渡されて、親も手伝って参加せよと言われたのだ。 汚れはご容赦願いたい。
 いくつかお答を戴いているが、正答の発表は、しばらくお待ち願う。

2017年10月12日

truing 3-jaw chuck

 以前にも書いたが、何人かの方から詳しく説明してほしい、という要望があった。この方法は町工場では広く行われている方法であり、難しいことではないが、旋盤の教科書ではまず見ない。

 条件としては、スピンドルがフランジを持つことである。要するに三爪チャックがそのフランジを覆うように嵌まり、ネジを主軸台側から締めるタイプであることだ。まず三爪チャックで各サイズの丸棒をつかみ、廻して振れを測定する。たとえば 0.5 mm振れていれば、チャックをある方向に 0.5 mm動かせばよい。

 三爪チャックがバックプレートを介して付けられているときは、手間はかかるが、細工は簡単だ。バックプレートのネジ穴を大きくする。
 振れを無くする方向にヤスリで削ってしまえばよい。沈め穴があるときはフライスで削る。なければドレメルでも削れるだろう。一回で成功することは難しいので、二、三回やってみて、具合を見る。バックプレートに段があるときは、下記の方法をおすすめする。小型旋盤にはこのバックプレートは無い場合が多い。

adjusting center バックプレート無しの場合は、スピンドル・フランジの外周を 0.5 mm削る。もちろん面取りを施す。チャックが、ごそごそと 1mm ほど動くだろう。その遊びの中で振れを吸収する。フランジの、ネジが通る穴をヤスリで少し大きくする。チャックをネジで軽く仮締めし、丸棒をくわえて廻す。振れが少なくなる方向に、チャックをプラスティック・ハンマで叩いてずらす。何度も測定して、誤差をゼロに持って行く。そこでネジを本締めしてできあがりだ。
 慣れると、この工程は2分でできるようになり、四爪に勝るとも劣らない精度を出せる。コレットを持たない人には具合が良い方法だと思う。

 この工程を心押し台方向からできるようにしたのが、Set-Tru chuckである。最小の5インチを手に入れたので、出来の悪い四爪は廃棄した。使うたびに腹の立つ思いをしていたので、ストレスが無くなった。現在新品を買おうと思うと、とんでもない価格である。程度の良い中古を探すべきだ。そうするとアメリカ製が買えるかもしれない。

 心を出すことを英語で truing という。 

2017年10月10日

転車台のドライヴ

Drive Wheel 少しずつ進んでいる。駆動用にスイス製のエスキャップのギヤード・モータを使う。いつ手に入れたのか正確には思い出せないが、アメリカのセールスマンに押し付けられたものだ。しばらく使いみちがなかったが、最適な用途が見つかった。

 出力軸でゴムタイヤ駆動する 。そこに使うタイヤは、良いものが見つからなかった。ラジコン屋で買って、油に浸けておくと、ことごとく劣化する。半分諦めていたところだったが、車のエンジンオイルを替えているときに、Oリングを見て閃いた。

 オイルフィルタの固定に、耐油ゴムの太いものを使っていた。これを嵌めれば、耐久性は抜群だ。ブラスの丸棒を旋盤で挽いて、ちょうど嵌まるものを作った。留めネジを二つ付けてできあがりだ。低回転だからバランスもとらなくてよい。回転速度もほどほどである。

 駆動時のみ押し付けられ、普段は浮いているから、歪まない。いつも押付けられていると、ゴムは変形してしまうから、変な振動が出る。
 この押付けのメカニズムは、現在製作中である。長年の使用でもへたらない構造である。接点は一つもないというところがミソである。おそらく世界で初めての方法だろう。
 このメカニズムの基盤は自宅のフライス盤でできる最大のサイズで、無理をしないように工夫して作っている。

2017年10月08日

pizzacutter

 4日のクイズの答は、表題のような形をした、炭素棒ハンダ付けの回転電極である。長いシルとかヘッダを連続して付けることができる。実に調子が良い。コン氏に材料を作って戴いた。あとは自作である。 コメントは本日公開した。コメント以外にもたくさんの方からメイルを戴いた。

 不思議なのは、皆さんは現物をご覧になったことがない筈なのに、正解を出されたことだ。黒いものはグラファイト(炭素)で、電線が付いているから、推理によって答を出されたのだろう。お見事である。

 グラファイト円盤は今野氏に作って戴いたのだ。大きさは直径80 mm程である。軸穴は Φ10でお願いした。Tavata氏のコメントにあったように、中心部に電流が集中するので、電流が分散するように径を大きくしている。
 軸は旋盤で挽いたΦ9.2のブラスで、0.8 mmの隙間に0.4 mm厚のブラス板を丸く曲げたものを圧入して、接触を確保している。ただ廻っているだけでは、ここが熱くなってしまう。軸にはフランジが付いていて、ネジで締めてあるから、接触面積は十分だ。

 先々回の写真の緑の線は仮のものである。現在はもっと太いテフロン線で接続してあるから、耐熱性は十分だ。製作中の客車のシルとヘッダをハンダ付けする時に用いる。
 ハンダメッキしておいて一端を曲げて引っ掛け、引張りながらゴロゴロと押すと、秒速 10 cm弱でハンダ付けが完了する。隙間が全くない完璧なハンダ付けである。動画を撮る必要がありそうだ。

Recent Comments
Archives
Recent TrackBacks
Categories
  • ライブドアブログ