2018年01月24日

終活

 就活かと思っていたら、終活という言葉があるそうで、少々驚いた。人生の終わりに近づくと、様々なものを整理する人もいるらしい。

 最近何人かの模型人が、工事中の博物館にいらして、
「うちに置いておくと、僕が死んだら捨てられてしまうから、事前にこちらに持ってきてよいか。」
とお聞きになる。お預かりするのは良いが、展示できるかどうかはやや難しい。ショウケースが足らない。3階が空いているので、それを展示スペイスにすれば何とかなるが、まだ先の話だ。内装工事やエアコン設置が必要である。場合によってはエレベータも必要だ。資金が要る。

 伊藤 剛氏は15年ほど前面白いことをおっしゃった。
「そのうちに、鉄道模型は持ち主が死んだらどういう風に保存するかを考えねばならない日が来ます。宗教法人にするという手もありますよ。お寺が良いですな。
哲藻院 應迎寺 というのはどうですか。読み方?テツモイン オウゲイジですよ。
そういう宗教法人にして、お布施を戴いて運営するというのはどうでしょうな。」

 もちろん剛氏一流の冗談ではあるが、時が経つと現実味を増す。
 この博物館の建設が始まるときに、土屋巖氏は、
「いろいろな人が模型を持ってきて預かってくれという日が来るが、タダで受け取ってはいけないぞ。相応の保管料を貰って運営するのだ。」
とおっしゃった。その日が近づいてきたような気がする。

2018年01月22日

Z軸DRO

 フライス盤の動力系の改良が終わり、残るはZ軸のDROの取り付けだ。

 非常に困ったことに、スピンドルが、本体の中で1度ほど回転する。DROを付けたら、捻られてしまう。 回転を止めるにはどうすれば良いか、考えているが、妙案が浮かばない。
 回転を許容して卞阿垢襪茲Δ砲垢襪函△匹Δ靴討1/20mm程度の誤差を認めなければならない。支点をうんと遠くに持っていけば、誤差は無視できるだろうが、剛性が足らなくなりそうだ。細い棒では座屈しそうな気がする。
 根本的に構造を改良するにはかなりの工事が必要で、そこまでやるほどの価値もない。

 このフライス盤は、いろいろな点で詰めが甘い設計で、経験の足らない人がやっつけ仕事でやったことは間違いない。つまらないところの剛性が必要以上に大きい一方、ここぞというところがダメである。

 この機種の拡大改良版は 幾つかあるが、どれも共通した欠点がある。筆者の自宅にある機械はその部分を徹底改良した。どうして売る側がそれに気がつかないかが不思議だ。

2018年01月20日

回転計とトルク計

tachometer and torque indicator フライス盤の改良で、回転計を用いて回転数を測定した。これはレーザ光を発し、反射光を数えるタイプである。アマゾンで安価にて購入した。写真中央下のものである。この話を教えて下さったのは、時々登場する Dr.Y である。氏は様々なモータを測定して、一覧表にされたのだ。100機種弱を整理されたデータで、非常に興味深い。
 電圧電流が直読できる安定化電源と、トルク計を用いれば測定できるとは言え、大変な労力を投入したデータであり、貴重だ。

 写真中央上はトルク計である。三爪チャックでモータの出力軸を掴み、所定の電圧で廻してバネ秤で直読する形式になっている。表示単位は昔懐かしい ”g重cm” である。 

 Dr.YはHOを楽しまれているので、モータのトルクはせいぜい 100 g重cm である。筆者に見せて下さった時、Oスケール用のものも測定してみよう、ということになった。しかし、たちまち振り切ってしまった。もっと大きなものが必要であった。

torque indicatorcalibration その後、ヤフオクで目を皿のようにして探し、ついに 600 g重cm のものを購入することに成功した。これらの写真をご覧になるとお分かりかと思うが、正逆回転に対応した目盛りになっている。
しかしこれでも振り切るものがいくつかあり、低電圧で測って高電圧のトルクを、外挿して求めることになった。筆者は商売柄 ”Nm” しか使わないので、980を掛けて何桁ずらすのだったか、再計算にやや手間取った。
 径が大きなものはモーメントが大きいので、概して高トルクである。マイティ800に付けてあるのは出力11.5 Wで、大人を載せた客車を牽いても、かなりの加速を示すはずである。もちろん客車にはボールベアリングを付けていることが条件だ。
 
 模型機関車用のモータとして適するのは、強力な界磁を持つ低回転モータで、負荷の掛かった時の回転数が落ちる率が小さい物である。吉岡精一氏が書かれた「モータ調書」のデータとよく一致する。昔から定評のあるEscapの低回転モータは、その点、抜群の性能を持つ。もちろん、伝達系は高効率であることは最低条件で、ろくに廻らないギヤトレインでは、話にならない。

 吉岡氏がデータを採られたのは25年前で、当時無かったモータもあるので、再度調べてみる。近々導入予定のパシフィックの強力機に搭載するモータを決める必要があるのだ。重量客車数輌を牽いて、15.6‰を駆け上がらねばならない。


2018年01月18日

X-1 micromill belt drive conversion kit の取付⑸

 ようやく体調が戻ってきたので、フライス盤の現物をばらして調整をした。結論としては、小プーリィを0.8 mm上げれば、すべて解決である。もちろん大プーリィは最大限下げておく。ガードとスピンドル・ロックを兼ねた角材に大プーリィの縁が当たるので、そこには 0.3 mm程度の隙間を空けておく。 

 製造元に聞いてみると、小プーリィの取付けもキィでできるのだが、キィを削ってするすると入るようにするという知識を持っている人が少なく、叩き込んで失敗する例を避けたいのだそうだ。大した力が掛かるわけでもないので、このような簡易キィでも十分だろう。組立て方は皆さんにお任せする。

small pulley 小プーリィの細く飛び出した軸穴部分は、ごく適当に削っても、バランスその他で問題が起きることは無い。筆者は旋盤で削るのが面倒だったので、手で回転させながら卓上型ベルトサンダで落とした。紙やすりの上で手で磨っても、すぐ完了である。

mortor ballbearing 面取りを施し、削り屑をブラシを通して掃除した。溶剤スプレィで洗って、ミシン油を塗って嵌め込んだ。キィは使わずに、ブラスのピンとネジで留めた。驚いたことに、差し込むとボール・ベアリングのインナレースの黒い油が均一に付いた。十分に平行に削れたということになる。削る部分の断面積が小さいので、アッという間に削れる。
 このベルトサンダは便利な道具で、ちょっとした調整はこれに限る。削れる速度が大きいので、保持するのも楽である。木材、スティール、ブラス、アルミ合金などなんでも来い、である。

pulleys in correct height 試運転中の写真である。多少手間取ったが、ベルトは水平になり、最高速で廻してもモータ音しかしない。意外と、このモータはうるさい。ブラシがあるからだ。小さな三相モータを付けて、インヴァータで制御すると静かになりそうだ。あるいはブラシレス・モ−タだ。そうすると変速装置は不要となるかもしれない。そうなれば回転数は0〜5000 rpmまで無段変速である。出力も増大する。
 暇になったらやってみよう。しかし改良が無限に行われると、最終的には3軸マシニング・センタになってしまう。しかし、4軸ないと面白くないのだ。そうなると外注するほうが出来が良くなる。あまり考えない方が良さそうだ。

2018年01月16日

X-1 micromill belt drive conversion kit の取付⑷

belt drive⑺ ベルトを嵌めてみる。横から見て、完全に水平であれば、良しである。張力は1.5 Nほどだ。150 gw程である。強くすると損失が大きく、弱くすると滑りやすい。刃物が噛んだ時に滑る程度にすれば良いので、そのあたりはご自分で調節願いたい。
 この写真を見ると、小プーリィが微妙に低い。モータ軸に対してより深く挿すことができれば、モータを持ち上げる必要はない。体力が戻ったら再度トライしてみる。ともかく、大プーリィは、出来る限り低く取り付けることだ。

 回転数は3段階で、無負荷最大値で、3010, 1840, 1020 rpmである。この数値は実測値である。元の状態よりはるかに速くなったから、細い刃物を使い易くなった。実は、モータの無負荷回転数が4000 rpmとあったのを真に受けて、そのつもりでいたが、実際は3400 rpmであった。誇大広告である。

⑻ ガードの内側のスピンドル・ロックを掛ける部分がプーリィに当たる可能性があるので、黒い中空ネジを外し、アルミ部分を0.5 mm程度削り、ロックをやや浅めに留める。これはスピンドルを駆動ユニット床板に対して中心に置いたから起こることである。もし基盤をやや手前に付けたなら、このような問題は起きないであろう。(下から挿すネジが、手前に引張った時、スピンドルのフランジの、両方の孔の手前の縁で当たっている状態なら良いという意味である)

⑼  ガードを下からネジ2本を締めて、固定する。ガードにはスピンドル・ロックが付いている。鋼製のロック機構を考えていたが、径の大きなところで押さえれば、小さい力で済むので、ブラス製部品にした。中にはスティールの棒が通っている。相手はアルミ合金だが、十分持つだろう。ミシン油を注しておくと良い。基本設計は筆者で、造形は任せた。なかなか良いと思う。

 これで機械的には終了で、筆者による組立て時間は、このマニュアルを書きながらで、2時間半であった。すべての部品は小気味よく組上げられる。作業を始める時に、工具、材料をすべて用意しておくのが、時間節約の基本である。
 キィは使っても使わなくても良い。ただ、キィを使うときはバリを取って、するすると入るようにしておく必要がある。引っ掛かるようでは分解ができない。キィ使用の時は、軸方向の抜け留めが必要で、軸にスナップリング等で留めねばならない。それを使わないようにするためには、ネジでキィを押し付ける必要がある。ブラスの小片を使うときは、軸のキィ溝にそのブラスが喰い込むようにしている。


2018年01月14日

X-1 micromill belt drive conversion kit の取付⑶

installing motor mount⑹ モータを取り付けたモータ台を本体に組み付ける。ネジの組み立て手順は、この写真を参考にする。黒い大きなネジを締めて、ベルトを掛けた時動かなければよいのだ。向かって左には、赤いファイバ製のワッシャを噛ませ、適度な締付トルクを与えながら、袋ナットを被せてロックナットにする。ブラスのシムには潤滑油を一滴落としておく。右の手で締めるネジには、大きな金属製ワッシャを挟む。

⑺ 紫の↑はガードがクイルに当たりそうで削ったものだ。実際は当たらないのだろうが、見掛け上、気になるので1 mmほど削った。

⑻ 赤の←の、コレット引きボルトを少し削って、細くした。寸法があまりにもぴったりで、締めると抜けて来ない。ということは締付トルクがかなり無駄になる。後で引抜く時も、喰い込んで面倒である。旋盤で0.05 mm削ったら解決した。
 dressing pullbolt headこの種のガタは、仕事を早く進ませるために必要なガタである。こういうところは、中国製らしい。経験がないのでわからないのである。薄くグリスを塗っておくと、締め易い。
 この引きボルトはM10である。筆者はインチサイズのMT2コレットをかなり持っているので、それ用の引きボルト(3/8”、約9.5 mm)を作る。普通の長尺の全ネジにナットを熔接して削り落とせばよいので簡単にできる。何本か作っておけば欲しがる人もいるだろう。

 それはそうと、旋盤の心押台延長の左ネジを欲しい人がかなり居る気配だ。筆者はU氏に作って戴いたのだが、同じ方法で作るのは大変である。専用の左ネジM10ダイスを買えば訳なくできる。これも筆者の旋盤上で、ダイスホルダを使えば、あっという間にできるだろう。一人で買うと高いものだが、多人数で割れば、どうということもない。
 もちろんその後の加工はご自分でやって戴く。材料はS45Cだから、卓上旋盤では出力不足になりかねない。手回しクランクでやるのが良いだろう。 
 希望者がいらしたら、コメント欄で<私信>として連絡されたい。数がまとまれば動き出してみよう。

2018年01月12日

X-1 micromill belt drive conversion kit の取付⑵

brass shim 向かって左の円柱上端にはブラス・シムが入っていて、0.050 mm低い。問い合わせたら、「そのようにした」と言うのだ。こちらの図面には描いてなかったが、摩擦が大きすぎるので、たまたまあった0.050 mmのシムを切って挟んだと言う。なかなか気が利いている。注油しない人が多いので、減らない工夫だ。右の方は見るからに摺動面で、減りを気にする人は多いが、ピヴォット側は放置ということが多い。アルミ合金は磨り減りやすいので、このような配慮が必要なのだろう。勉強になった。

⑴ まず手前のガードと角材を外す。ネジは固く締まっている。これを取っておかないと、あとでベルトがはまらない。 

⑵ モータのギヤを外して捨てる。新しいプーリィの径の大きい方を上にして、飛び出しているところが、モータのボールベアリングのインナ・レースに当たるように嵌め込んで、様子を見る。この時、シャフトにはリング、ワッシャなど、何もついていないことを確認する。小プーリィの飛び出しているところを0.8 mm削り落とす。削るのは、旋盤が一番良いが、サンドペーパ上で回転させながら削っても何ら問題ない。この操作によって、小プーリィは0.8 mm高い位置につく。面取りを施し、孔の中をよく掃除する。 キー溝にネジ穴を合わせて、完全に奥まで差し込み、穴からブラスのピン(短い方)を入れ、ネジを締める。元のキーは使わない。ミシン油程度の油を塗っておいて組むと楽である。
 要するに、ベルトは水平でなければならない。

⑶ モータ台にモータを置き、線の取り出し方向を考慮し、位相を決めて固定する。プーリィを傷つけないように、箱に入れて保護しておく。ネジは元のモータ取付け用を用いる。

installing base⑷ 下から駆動ユニット床板を留める。付属のM6ネジを 用いるのだが、位置が決まりにくい。手前に引張りながら、側面がベッドと平行でなければならない。半締めして、プラスティック・ハンマで叩き、細かく移動させて本締めすると良い。外すことは無いと判断すれば、少量の接着剤を塗っておくと良い。将来ビビリが発生することが無くなる。
 このM6のネジは、スピンドルのフランジの孔(6.44 mm)に比べて小さい。ガタの中で、基盤を最大限手前に引張った状態で締める。

fixing pulley⑸ 大プーリィをスピンドル(クイル)上方から挿す。下まで完全に落とし込む。この時、駆動ユニット底板からプーリィ下面まで、1.3 mmのクリアランスがあるのが望ましい。0.5 mm板と0.8 mm板を重ねて挟んでおいて、引き抜けばよいのだ。もっと低くしたいが、大プーリィがガードの角材に当たる。

 せっかくキィ溝があるので活用した。キィの幅はぴったりだが、高さ(法線方向)がやや高いので、ベルトサンダで削り落とした。プラスティック・パイプ(竹筒でも良い)を嵌め、プーリィをハンマで軽く叩いて沈める。所定の位置で、ネジを入れて締め上げる。キィを使ったので、ブラスのピンは使わなかった。プーリィを落とし込む時、ハンマーで不均等に叩くと、クイルが曲がる可能性があるから、必ずパイプ状の物を介して叩くようにする。仕上がりは良く、簡単に入るようになっている。精度は十分だ。むしろ、クイル表面のざらつきのほうが気になった。細かいサンドペーパで擦って、メクレ等を取り除き、洗浄スプレイで洗ったのち、ミシン油などを塗って嵌めると良い。サンドペーパを使うと砥粒が落ちるので、孔をあけた新聞紙を被せて、全体を保護し作業終了とともに掃除機を掛ける。

2018年01月10日

X-1 micromill belt drive conversion kit の取付⑴

 この造形は、以前取り寄せたアメリカ製のものとはかなり異なる。ベルトの嵌め替えの面倒な曲面ガードを廃し、厚板でガードした。また、ネジ一本でベルトの張替えができるようにした。しかも指で廻せるようにしてある。3段変速だから、この設計は役に立つはずだ。
 筆者は最近右手拇指が故障しているので、これでも少々廻しにくい可能性がありうる。夜中に関節が外れることも、たまにあるのだ。
 そういう時は、例のセレーションの付いたレヴァに取り換えざるを得ない。歳を取ると、様々なところが劣化してきて、模型工作すらできなくなるような気がしてきた。
 要は使い過ぎたのだ。こういう作業を何もしない人は、殆ど変化がないように見える。安楽マニアは問題が起こらないのだろう。

 先日庭のデッキを修理する時に、帰省中の長男と3時間ほど働いたのだが、金槌をフル・ストロークで打ち下ろせないことに気が付いた。親指が弱く、握力がないからだ。以前は89mm(3インチ半)の釘を1ポンド(455 g)のハンマで3回で打ち込めた(これがアメリカの大工の必須事項)のが自慢だったが、もうダメである。インパクト・レンチも両手で保持する。

 スピンドル(クイル)から歯車を抜くのに困る人はお知り合いの自動車修理屋あるいは機械修理屋、水道屋などに頼んでギヤ・プーラを貸してもらうと良い。壊しても良いものなので、ドリルでいくつか孔をあけ、鋸で切れ目を入れて、割ってしまっても良いだろう。鋼製の中空軸は意外と固く嵌まっている。スピンドルには焼きが入っているわけではないので、曲げないようにしなければならない。どこにも借りる伝手がない場合はお貸しするが、たくさんの要望がある場合には、こちらからの指定順で、巡回させることになる。その場合の送料は、順次ご負担願う。ばらして入れれば510円で、次の方に送れると思う。組むのはこの写真通りにすれば良い。簡単である。

2018年01月08日

X-1 micromill conversion kit 到着

conversion kit 年末に発送したと連絡があったが、正月を挟んだので、少々時間が掛かった。DHLで 名古屋空港NGOの倉庫までは来ていることが分かったが、通関に手間取ったようだ。関税は十分に払うからと言ってあったのだが、安くしてくれたようだ。

 綺麗な仕上がりで良かった。スピンドルのロックも思うような構造にしてくれた。ネジはドイツ製だと言っているから、信用できるはずだ。
 ベルトは三ツ星の高級なベルトで、これは日本で調達した。不思議なのは外地の方が安いのだ。これを取り寄せてくれた親しい工具屋のK氏は、「大量だったら向こうから仕入れるべきだな」と言う。特別価格にしてくれても、1本1060円だった。向こうでは普通に一本買っても900円だという。在庫がなかったようなので日本で調達した。

 どういうわけか、英語での説明書を入れてくれたが、文法的ミスで理解不能な点が多い。このブログで取り付け方をお知らせするのが一番簡単だろう。
 
 これであの騒々しい運転音と、歯車駆動の不安が一挙に解決するのなら、有難いと思っている。実は2回喰い込ませている。モータが非力で助かっているが、怖い話だ。プラ歯車はゴミ箱に叩き込んだ。

 実は珍しくインフルエンザに罹り、寝込んでいる。発送は少し遅れるかもしれない。

2018年01月06日

インヴォリュート歯車

 その方にどうして100%ということがありうるのかと聞くと、99.99%以上だという。少し後退した。何か怪しい。その電車に乗ってみて音を聞いた。モータ音以外に歯車音もある。これでは99%近辺だ。歯車箱を触ってみればすぐわかる。かなり温かいはずだ。
 普通の平歯車は98%である。効率を上げるには径を大きくしたり、モヂュールを小さくする以外に、斜歯にする方法がある。そうすると重なり噛合い率が上がる。

 噛合い率とはいくつの歯が噛んでいるかということである。斜歯なら、3枚程度を噛ませることができる
 転位させて歯先と歯元を薄くすることができれば、殆どがピッチ円付近の接触になり、転がり摩擦に近づく。この辺のことは50年前に亡父から聞いた。
 船のスクリュウのように連続負荷なら良いが、鉄道では衝撃負荷が多いので、斜歯は感心しないのだそうだ。斜歯は弱いのだ。それから、設計時は歯車の効率を95%と見積もって、発生する熱をどうやって捨てるかを考えておかないと実戦で役に立たないのだそうだ。今はもう少し良いだろう。潤滑油の進歩もある。第二次世界大戦の兵器はそんなものだったのだ。斜歯の場合は負荷によって性能に差が出る。力が掛かると歯が曲がるのだそうだ。要するに彼は、軽負荷での性能を拡大解釈しているのだろう。

 もう一つ父は付け加えた。斜歯にするときは歯先、歯元ともに薄くしてはならない。すべてが当たるようにすると、効率が上がるというのだ。その理由は聞きそびれたが、多分、噛合い率が上がり、歯が曲がりにくくなるのだろう。

 話題になった電車は、出力が小さいので斜歯であるが、機関車などで一台1MW(1300馬力)もあるモータでは使えない。即ち効率は98%程度だ。
 歯車の効率はコンピュータが進歩し始めたときに、数学の先生に計算してもらった。そう簡単には騙されない。一応は勉強しているのだ。


2018年01月04日

続々々 困った3条ウォームギヤ

 歯車は奥が深い。筆者は父から聞いた話と、数冊の本を読んだ程度の知識しかなく、高度な計算を伴う設計はしたことが無い。ウォームギヤについて知っていることは、
・バックラッシを小さくできること、
・摩擦を低減することができれば効率は上がること、
・進み角を大きくすると単純な滑りではなく、転がりに近くなって効率が格段に上がること、しかし、進み角が18度を超えると、歯形を変更しなければならないこと、
である。
 先日来、この項目で、某模型店製の進み角の小さな3条ウォームを紹介しているが、ある方から次のようなお便りを戴いて、新年早々大笑いした。

 3条ウォームの件は本当にお気の毒様です。私に言わせれば、小さな進み角の制限のもとで3条もの溝を成立させる方がよほど難しいです。故にこれは、貴殿の方式を貶めるため、相当頭の切れる策士が緻密に練った謀略に違いありません。

 これはジョークにしても、どうやって考えるとあんな結果になるのかは、本当に不思議だ。



 話は替わって、スパーギヤ(平歯車)の効率は100%ではない。この動画は歯車が摩擦しながら動いている様子をよく表している。この線の角度が圧力角である。中心から遠い部分と近い部分での周速度は異なる。その速度差分が損失を生じる。ピッチ円上だけが、完全な転がり摩擦だ。
 スパーギヤの効率を上げるには、ピッチ円付近でしか接触しないようにすることが必要である。径を大きくすると、ピッチ円付近しか接触しなくなる。即ち、相対的に大きくするにはモジュールを小さくすることが同じ働きをするだろう。その他、高度な工夫もあるが、結局は摩擦から逃れることはできない。即ち効率は100%にはなりえない。

 しばらく前、ある実物業界の方が、インボリュート歯車は完全な転がり摩擦だとおっしゃるので、質問してみた。どうやら歯車メーカの効能書きの受け売りをしているようで、実際に運転時に触ってみたことは無さそうだ。100%なら発熱は無く、潤滑も要らないだろう。
 人の言うことやカタログを信用する人は進歩できない。しかし、その方は筆者に「もっと勉強せよ。」としか言わなかった。ご自分がどんな勉強をしたのかを、聞いてみたかった。



2018年01月02日

続 転車台インデックス装置の完成

 いくつかお答を戴いている。ほとんどが正解である。ヒントを目ざとく見つけられて、完璧なお答の方もある。一方、いつもコメントを戴く方々からは、お答がなかった。 

 正解は高粘度シリコーン・グリースを用いた粘性結合継手である。信越化学がいくつかの粘度のものを出している。中粘度のものが良かった。これはトイレの蓋のヒンジなどに使われているアレである。ゆっくり閉まるのは粘性による。写真の中に信越化学の丸い瓶があるが、それがヒントである。ShinE…という文字しか見えないが、分かる人にはすぐ分かっただろう。
 この種の継手を鉄道模型に使ったのは、これが世界で最初の例ではないだろうか。MRに投稿してみようと思う。作るのは簡単で、消耗せず、半永久的に持つ。

 シリコンsiliconとシリコーンsiliconeは異なる概念を指す。前者はケイ素の単体あるいは元素を指す。例えば、シリコン整流器という言い方をする。後者はケイ素と酸素が交互に結合した骨格を含む合成高分子(シリコーン樹脂)を指す。間違える人は多い。

 さて、円柱とそれにかぶさる円筒の隙間を変えて、様々なテストをした。隙間が0.1 mmでは狭すぎる。0.2 mm弱が一番良いことが分かった。長さは必要とされるトルクに応じて調整した。廻していると温度が上がるかと思ったが、出力がせいぜい 0.3 W 程度なので、30分くらい廻っていても温かくなる兆候は見られなかった。ある程度の推力を生み出して停止していても、何の問題もない。バーサインの分だけ押し戻されても、推力が増えることはない。バネを介して押すよりはるかに確実であり、利点が多い。
 この装置には3つの粘性継手が使われている。作動が穏やかである。よく見るソレノイド等のガチャガチャとした作動ではないが、正確なインデックスが可能である。ずれても戻せるところが面白い。


2017年12月31日

続々 困った3条ウォームギヤ

 このウォームを発注した時の仕様書らしいもののコピィがある。判読が難しいところもあるので、読めるところだけ書くと、モヂュールは0.6らしい。

 歯先円直径は 7.8 mmとある。これはどうしたことだろう。この現物はもう少し
太い。ピッチ円を指定していないところが不可解だ。また、軸穴を3.0 mm径と指定している。これはまずい。2.5 mmにすべきだった。そうすればかなり細くなり、進み角は大きくなる。このあたりは経験不足から来ている。どうして先駆者に聞かなかったのだろう。小学校の算数と理科の範囲である。 
 材質はS45Cである。どうして快削鋼にしなかったのかは疑問だ。快削鋼であれば、表面の粗さが、より良いものができる。逆駆動には、このあたりの微妙なところも大切なのである。イモネジはM1.4らしい。

 ウォーム・ホィールは28枚歯で、歯先円直径は18.7 mmとある。これは正しい。歯数が互いに素であることは良い。これもイモネジ(M1.6)で締めるようになっている。このような留め方は避けたい。僅かの偏心が逆駆動の妨げになりうる。材質はリン青銅で、これは良い。

 組み込んで動かなかったものだから、その模型店には客から文句が来たようで、その返答のコピィを見せてもらった。それは私信に属するから、写しは取らなかったが、概要はこういうことであった。
 逆駆動するには動軸にボール・ベアリングを入れないとダメである。逆駆動はこの程度が限界であると認識されたい。なじんで来れば多少は良くなるかもしれない。”

 何を言っているのか、全く理解できない。滅茶苦茶である。かなりの金額を支払ったそうだが、全て灰燼に帰している。もったいないことであった。
 ウォーム軸にスラスト・ベアリングを入れれば、動軸側には無くても逆駆動できる。進み角の小ささと歯面の仕上げの悪さが、こういう事態を引き起こしている。快削鋼で作っていれば、きっと動いたであろう。進み角が小さいので、効率は良くないが、一応は動いたはずだ。モリブデン・グリースを使うことも必須だ。

 筆者の機関車は、同一の線路に2輌載せて、片方を押すと発電してもう一輌が走り出す。正しい設計とそうでないものとは、ここまで違うのだ。
 筆者の発表した記事には、全ての必要項目が書いてある。そのまま作れば、必ず動いたのだ。そして、そのグループでも標準仕様として採用されて、動力機構の改善が進んだはずだ。下手な知恵を出すからこういうことになる。残念な限りだ。もう既に時効だろうが、正しいものを作り直させることが必要だ。

 返すがえすも残念なのは、そのグループには吉岡精一氏も居たのに、吉岡氏に相談しなかったことだ。吉岡氏は筆者の設計の歯車を多角的に解析し、実験結果を含めた「ウォームギヤ調書」という数十ページのレポートをグループ内で配布している。それは筆者がアメリカに居る頃で、日本では盛り上がっているのだろうなと想像していたが、結果はこれであった。誰もその内容を読んでいないのだ。非常に分かり易く書いてあるのにだ。吉岡氏曰く、”中学生にも分かるように書いた”とのことであったが。吉岡氏は筆者のギヤを活用されていた。 

 筆者の正しい3条ウォームは手持ちに余裕があるので、希望の方にはお譲りしている。

2017年12月29日

続 困った3条ウォームギヤ

 問題の3条ウォームをお借りした。組み立てて試験をしてみよう。

triple-thread worm gear setcorrect triple-thread worm 径が大きく8mmほどある。この進み角は9度ほどだ。大昔の2条ウォームがこれ(右)である。直径は、6 mmほどである。この進み角は11度強である。
 3条なのに、2条より緩い角度なのである。困ったものだ。

 この2条ウォームギヤは逆駆動できる。両端にスラスト・ベアリングを付けたらかなり楽に動いたが、効率はそれほど高くないことが分かったので、採用しなかった。 

 左のウォームにはネジ穴がある。非常に理解しにくい設計だ。こういうものを押しネジで締めると偏心するから、ろくでもないことになる。ロレットを切って圧入するか、ロックタイトを使うべきである。

 このウォーム・ギヤのセットはさる高名な模型人が諸元を決めて、発注されたようだ。その書簡の一部も発見された。作って売った模型屋の言い訳の手紙のコピィもある。どうしてこういうことになるのだろう。

 3条ウォームにするということだけしか考えていない。3条にすると2条の時と何が違うのかを考えていないのだ。モヂュールが同じで、同じピッチ円なら、進み角が大きくなる。こんなに径が大きければ意味がないことは明白だが、おかしいとは気づいていない。設計者に「動かないじゃないか。」と文句を言う人がいたらしいが、設計がおかしいじゃないかと言った人はいないのだそうだ。

 そのグループ内にこのギヤが頒布されたようで、皆「動かない!」で不満が溜まった。結局、「3条ウォームはインチキである。」ということになったそうだ。
 よく動くものがあり、その写真もあるのだから、比べて検証すれば良いのだが、それもしない。相手を非難するだけでは、何の進歩もない。しかし一部の人達はカツミ製の輸出用ギヤボックス(祖父江氏設計)を手に入れ、よく動くと重用している。そのギヤは筆者設計で、進み角は17度である。

 このあたりのことを見聞きすると、この国の模型人の、物理に関する理解度が知れてしまう。機関車が走るのも、止まっているのもすべて物理の法則による。工作の上手、下手とは異なる次元の、極めて大切なものが抜け落ちている。それは物理という言葉で表す必要もないほど、単純明快なことなのだ。 


2017年12月27日

転車台インデックス装置の完成

turntable index completed かれこれ2箇月も掛かってしまった。先日ようやくすべての部品を組付け、試運転を行った。結果は上々で、慣性モーメントの大きなものがグワーンと動き、ギューンと正位置に停止する。この写真は10日ほど前に撮ったものである。現在はもう少し進歩している。近日中に動画を撮って、お見せしたい。

round notch 目的の位相に近づいた時、インデックス装置を作動させると、プランジャが伸びて円盤に当たる。プランジャ先端のローラ・ベアリングが刻み目を拾うと、回転している円盤の慣性によってインデックスは横にずれる。その時、ダンピングが起こる。
 以前の写真では平行な切れ目が付いているが、現在はローラ・ベアリングの丸味に合わせて、僅かな丸い凹みが付けてある。

 電線は、通称「尺取虫」で支えてある。これがないと局所的に疲労し断線するだろう。メインテナンス・フリィを眼目としているので、各部分の疲労が無いような設計である。この尺取虫の本名を調べたのだが、分からない。御存じの方はお知らせ願う。

 センタリング装置を作動させると、ゆっくり正位置に向かって動き、アラインメントが出る。センタリングはタンジェントが1/3である。ボール・ベアリングで転がすので、抵抗はほとんど無い。引張る部分はボール・ベアリングで3方向から支えてあるので、抵抗は感じられない。非常に効率が良い。ラックをギヤード・モータが引張ると、するっとセンタリングするが、円盤の大きな慣性モーメントがあるので、ゆっくり動き、時には行き過ぎる。再度センタリングをすると所定の位置に止まる。この動きが実物のようで、満足している。全自動のコンピュータ制御のものとは全く異なる実感のある動きである。
 この装置全体で、ボール・ベアリングは28個使っている。

 円盤は940 mm径だが、フレは0.2 mm以下である。非常に正確にできた。回転橋のフレもその程度であろう。180度廻したときのずれが大きいと具合が悪いので、そこには最大限の注意を払う。

 すべてのモータにはある装置が付けられ、逆駆動も可能であるし、負荷が掛かっていてもモータは停まることもない。さて何であろうか。正解発表は新年にしたい。ヒントは写真の中にある。

 尺取り虫の正確な名前は、椿本チエインのケーブルベヤであることが分かりました。ご教示ありがとうございます。

2017年12月25日

gusset plate を貼る

steel bridge ガセット・プレートを順次貼っている。意外と時間が掛かるものである。リヴェットを打ち出したものをシァで切って、叩いて平らにしたものを貼る。接着剤はスーパーXである。
 薄く塗っておいて、両方になじませ、マスキング・テープで仮留めする。位置を確認してから、軟らかい木材を当てて締め付ける。中の方まで固まるまで、1日以上掛かるようだ。
 クランプを外して次の列を数枚貼る。これを繰り返してようやくここまで来た。あと少しである。

 見えるところは全て貼りたい。内側も大きな面積のところは貼りたくなってきた。今ガセット・プレートを増産中である。

 塗装を考えている。色はどうすべきか。黒か銀かそれとも濃いグレイだろうか。レイアウト全体が薄いグレイであるから、突出した色は避けたい。


2017年12月23日

逆駆動

 押して動くか、すなわち逆駆動出来るか、ということは、ウォーム歯面の勾配と摩擦の大小に依って決まる。歯面の摩擦は避けられない。効率を上げるには摩擦係数を小さくするしかない。摩擦関係の本を数冊読んでみると、いくつかのことが分かった。

 まず、潤滑を良くすること。これには極圧剤が不可欠ということも書いてあった。次に材質を異にすると摩擦が小さくなるとあった。これは常識らしい。確かに同じ材質なら、圧力が掛かった時にくっついてしまうかもしれない。先人の経験から、快削鋼とリン青銅の組み合わせがベストということになっている。

 斜面で、摩擦によって静止できるのは角度が4度以下ということになっているらしい。それ以下でも、振動を与えると動き出すとあった。そうかもしれない。ネジが緩むのはそれが原因だ。

 ふつう我々が斜面の効果を実感するのは、ネジや楔(くさび)である。ネジ込めばネジは締まるし、楔を叩き込むと隙間が無くなる。
 逆に、押すとネジが廻ったり、楔が飛び出すのを見ることはまずない。3条ウォームでは、それをやろうというのだ。風車を考えてみよう。風は平行に動き、その中で風車は回転する。
 難しい流体力学はすべて無視して、ただ斜面の効果だけを考えれば、大体同じである。羽根の角度が90度に近ければ廻りにくい。45度付近が一番廻りやすいだろう。

 亡父が話したことで印象に残っているのは、「大砲の砲尾の閉鎖機(弾と火薬を詰めて蓋をする装置)は、5条か6条のネジになっている。半回転以下で締まるが、爆発時の圧力には十分に耐える。逆回転しないようにラッチが掛かっている。」であった。そんなネジがあるのかと興味を持った。それが小学校高学年の頃だ。

 3条ウォームを最初に設計する時は、そのようなことを思い出していた。ネジの進む角度は径が小さいほど大きい。しかし、角度が大きいとウォームホィールの歯に当たることもわかった。そういうわけで17度という角度が決まった。
 歯車屋に行って注文すると、大将はむかっとした顔で、
「あんたねえ、俺が何年こんな商売やっていると思ってんの。ウォームは逆には廻らんよ。廻ったら、逆立ちしてやるよ。全部タダにしてやらあ。」
と啖呵を切った。

 電話があって受け取りに行き、
「逆に廻ったら金は受け取らないんだね。」
と確認した。
「来週ギヤボックスを作って見せに来るから、金はその時でいいか。」
と聞くと、大将は、
「もちろんだ。持って来い。出来るもんか。」
と胸を張った。

 約束の日にギヤボックスに付けて見せに行くと、大将は愕然とし、へなへなと土下座した。
「こんな商売を30年やってても、気が付かなかった。俺はバカだった。考えてみりゃあ、斜面が急なんだから廻るよな。あんたは天才だよ。金は受け取れねえ。次もタダでいいよ。あんたの注文はどんな注文だって聞いてやるよ。」
と言った。
 結局最初に20セット作り、次に300セット作った。本当にタダにしてくれた。その歯車屋とは仲良くなって、いろいろな歯車を作ってもらったが、そのうちに大将は病気になり、廃業した。残念だった。


2017年12月21日

正しい3条ウォーム 

triple thread worm 先日友人に見せてもらった3条ウォームは、正しい設計であった。実はその存在を20年以上も知らなかった。

 日本製のフランス型機関車である。有名なPacific231という機関車だ。これをばらしたものを見せてもらった。ギヤボックスはダイキャスト製で、中にはブラスの細いウォーム、POM(いわゆるアセタール樹脂、商品名ではデルリン)のウォームホィールが入っていた。歯数は40であった。互いに素である。

gear box ギヤボックスを見て驚いた。そのマークはどこかで見たものである。Asterではないか。アスターはもともとキャッシュ・レジスタなどの精密機械を作っていたので、技術者をたくさん抱えていた。そういう人たちが作ったのだから、正しいものを作れるのは当然、と言えば当然である。その辺の模型屋には無理なのも、仕方ない。

 アスターがこのギヤを採用したのは、おそらく電動の1番蒸気機関車の駆動に必要だったからだろう。押して動くことに、価値を見出したのである。押しても動かない1番ゲージの蒸気機関車を想像すると良い。そんなものは意味がない。
  大きな重い機関車だからこそ、押して動くということに意味がある。HOサイズの人たちがあまり興味を示さないのは、そこに原因がある。
 
 このギヤボックスにはスラスト・ベアリングが入っていない。精度高く作れば、要らないのである。普通のラジアル・ボールベアリングでも、かなりのスラスト(軸方向の推力)を受けられる。押されたときに拡がらないように、外側を支える部分を正確に作ってあれば良いのだ。筆者が最初作った物は挽物のハウジングで、ガタを見越している。そういう設計の時は、スラストを確実によそで受けておかないとまずいのである。後にCNCで精密に作った時はスラスト・ベアリングを排除した設計にした。非常にうまく動く。

 ともかく、1番用をOスケール用に転用したのだ。逆駆動は簡単にできる良い設計である。ただ、モータは高級なコアレスを使わないとダメである。これがいつまで経ってもわからない人が、一定割合存在するのは残念だ。

2017年12月19日

gusset plates

 鉄橋の工事が停滞していた。ガセット・プレートの加工が遅れていたからだ。いつもお手伝い戴いているクラブのN氏が見かねて、代わりに作ってくださった。

LED lightingLED lighting2  工具一式をお渡しして、お願いした。リヴェットは下から押し出す方式である。型紙の大きな丸にダイをあてがい、どの方向からも白い部分が見えなくなった時に打てば、所定の位置に押し出せる。それを手前以外に向こうからも見なければならず、数枚を作ってもう体力が無くなったのである。目の良い人でないと難しいと思っていた。若い人が集まった時にお願いしようとも思っていたのだが、N氏は、LEDで照明を当てながら鏡で見るという方法を考え付かれたのだ。三方から同時に見られるので、仕事は大幅に早くなったそうだ。実際にはLEDはほとんど使わず、蛍光灯の光だけで十分だったとのこと。

gusset plates すごい数のリヴェットを短期間で打ち出して戴いたので、早速貼り付けに掛かっている。この写真の下が型紙を貼った物で、上はできあがりを裏側から見たものである。


 それをシァで切り落とす。リヴェット打ち出しで、全体が反っている。それを修正するために、金床の上でゴムハンマで叩く。満身の力を込めて一発で仕留めるのだ。リヴェットの裾野は平らになり、全体も平面になって落ち着く。

 貼り付けるべき場所を確認する。これが意外に大変な作業なのである。よく似たものが多い。型紙は両面テープで貼ってあるので、きれいに剥がして、接着剤で貼る。マスキング・テープで仮留めしてから、軟らかい木の板を挟んでクランプで締め付けると密着する。

 N氏が述懐する。子供のころはお金がなかったし、腕も知恵もなかった。ただ視力だけは十分にあった。今は視力だけがないと。
 本当にその通りだ。筆者は、若い時はとても視力が良く、両眼とも2.0であった。ところが現在はかなりの遠視で、眼鏡をいくつも首からぶら下げているが、それでも足りない。  


2017年12月17日

フライス盤の制御回路

 このフライス盤は直流モータで駆動されている。マグネットモータである。困ったことに、磁束が漏れている。モータ側面に鉄片が吸着されるのだ。磁束漏れは出力低下の原因である。いずれ厚肉鉄パイプを被せてみよう。


motor controlto fit into the box 制御装置はこんな形である。寸法を測って金属製の箱を買ったが、入らない。箱の前後の妻板が10mmほどオフセットしていて、奥行がないのだ。

ventilation こういう時はいつもの手を使う。妻板に孔をあけて、飛び出させて、それを別部品で覆う。発熱する部品なので、換気用という大義名分も使える。 

 アルミ箱の片方の妻板を、何度か曲げ、疲労させて折り取り、それを後ろに持って行く。ネジ留めしても良いが、接着でも良い。操作盤は手前に持ってきて、底面に接着する。5 mmのベークライト板で嵩上げすると、操作パネルの下端の高さがちょうどよくなる。

nibblerswarf ゴミ箱の上で、電動ニブラ(nibbler)で孔を開ける。切り粉は燃えるゴミでよい。アルミニウム屑はよく燃えるからだ。この程度の切りくずなら、回収する価値はない。


 この道具を使えば、切るのは簡単である。意外とこれを持っている人は少ないようだ。筆者は、エアコンのダクトを構成する薄鉄板をくりぬく作業をすることがある。それには便利な道具であって、安いものだ。これは日本製である。切粉はこのような三ケ月状である。

 電気ドリルに付けるアタッチメントとしても売っているが、これは専用機である。
 0.8 mmの鉄板でも簡単に切れ、切断速度が大きいので楽である。アルミなら、紙を切るような感じで切れる。直線を切るときはガイドを取り付けてそれを添わせて使う。円を切るときは半径を決める定規を付ける。
 機関車の床板に使う1.5 mmのブラス板も、大きな板から切り出せる。切り口は多少凸凹しているのでヤスリを掛ける必要があるが、大した作業ではない。


2017年12月15日

フライス盤を分解する 

 来週あたりにベルト・ドライヴが発送されるようなので、下準備を始めた。

motor gearBlogPaint モータを外してみたら、とんでもないことになっていた。樹脂製歯車が少し下がって(抜けて行く方向)、絶縁用のプラスティック板に当たっている。摩擦熱が発生して、ギヤが変形を始めていた。キー溝がすでに30度ほど回転している。温度が上がって、クリープが起こったのだ。その原因は、ギヤを留めるスナップ・リングの欠落である。もともとなかったのかもしれない。中国製だからとは言いたくないが、ひどいものである。この状態でしばらく使うと、ギヤの中でキーが回転していくのだろう。一周するとどうなるのだろう。 

disassembling gear traindisassembling gear train 2 スナップ・リングを専用工具で外す。めったに使うものではないが、これが無いと作業が困難だ。ギヤを1枚外してみると、その先は鋼製のスリーヴ(ギヤ間のスペイスを稼ぐもの)と、もう一枚のギヤがある。これが固くて取れない。嵌めあいが、きつ過ぎるのだ。


gear pullermill spindle 仕方がないので、ギヤ・プーラを持ってきてセットした。プラスティックの歯車に爪を掛けるのはためらわれたが、壊れても良いのでそうした。この種の道具は、ドイツ車と米車とを持っていた時の整備工具である。よく壊れたが、すぐ修理できるので、部品とパーツを沢山保有していた時代があった。懐かしい思い出だ。
 上端のネジをレンチで廻すと、すぐ抜き取れた。 外すとこんな様子だ。フランジにバカ孔が2個ある。ここにベルトドライヴを付けるのだ。

gear case 箱は外してみるとこんな形である。これだけで、2 kg弱もあった。熔接はへたくそで、ひどいものである。鉄クズ置き場に直行だ。

2017年12月13日

続々 turntable indexing

index roller 転車台のインデックス(割出し装置)は、当初の計画をかなり変更した。楔を差し込む形を考えていたが、ローラ・ベアリングが一つ見つかったので、それを押し付けることにした。そうすればスリットに入らずに滑っているときの抵抗は少ないし、潤滑も要らない。 

DSC_0023 ローラ・ベアリングを収める部分は3 mmの板で作り、軸を真っ直ぐ通すために、縦フライスで孔をあけた。刃が長いものは4枚刃しかなかったので、ドリルで適当に穴をあけ、その後でフライス刃を差し込んだ。一瞬で正確な穴があき、その部分は完成だ。2枚刃なら下穴なしで切り込めるが、4枚刃ではそうはいかない。

DSC_0020DSC_0025 前後に動くプランジャ部分は、当初側面に溝を掘ってボールベアリングを偏心スリーブで受けていた。溝の角にボールベアリングのアウタレースが当たると、いつかは減るだろう。重さを別に受ける必要がある。部品を新製し、ボールベアリングを仕込んだ。簡単な工作だが、機械がないとできない仕事だ。

 真ん中にラック・ギヤをはさんで角棒をハンダ付けする。全く隙間の無い、完璧なハンダ付けをした。ラックの背が低いので、別の角棒で下から支えている。
 このような長いものを付ける時には太い針金を曲げて作ったバネクランプで、全体を締める。ネジ式クランプではハンダが中まで入らない可能性がある。もちろん、接着面はキサゲで刻んで、めくれを付けてある。僅かの隙間をあけておくためである。塩化亜鉛飽和溶液を塗って、ハンダを置いてガスバーナで焙れば、できあがりである。切り口を見ると完全に一体になっている。


2017年12月11日

スコヤを捨てる

squares これらのスコヤ(英語でmachinist square、直角定規)を捨てることにした。どれも狂っている。軟らかい材質と組んでいるので、落としたりすると、組んだところが塑性変形したのだろう。
 狂ったのだから直せるが、直してもまた狂う。より狂いやすくなる。
駄目なのは印をつけて箱に投げ込んであったが、先週全部解体して捨てた。ブラスの部分は切り取ったから、いつか何かに使うことになる。ステンレス部分は磁石に付くクロムステンレスであったので、鉄くず箱に入れた。

solid steel square 右にあるのは一体型のスコヤである。これに限る。元はイギリスで作られた形のようだが、今は中国製である。機械の精度で作られているので、どこで作っても同じである。価格は比較的安い。輸入してクラブ員に頒布して喜ばれた。総数100本ほど輸入した。ほとんどが、スーツケースで持ち帰ったものだ。

 一度手持ちのスコヤをチェックされたい。愕然とする人が多かろうと推測する。
このスコヤを希望する人が多いので、いずれ再輸入してみよう。
 
composite squares 捨てる時にタガネで根元を割った。驚いたことにスリ割りを入れただけで、刃型の丸味が見える。ということは両端でしか接触していない。当然狂いやすい。ハンダ付けしたこともあったが、またすぐ狂ったのはこのせいだ。

 X-1のベルトドライヴは、間もなく入って来る。写真が送られてきた。まじめな男で好感が持てる。


dda40x at 12:11コメント(2)工具 この記事をクリップ!

2017年12月09日

困った3条ウォームギヤ

 最近3条ウォームギヤに出会うことが多い。模型人の友人が見せてくれるのだ。しかし、少々頭が痛い。

 動かないと言って、筆者に文句を言う人が居る。そう言われても、その設計には関与していないのだから、文句を言う相手が間違っている。
 模型用3条ウォームは筆者設計のもの3種、某模型店製の2系統しか国内にはないと思っていたが、もう一つあった。それは後述するが、出来が良くて、ちゃんと逆駆動できる。

 HO 用のものは2条で以前話題に上ったが、2:30という割り切れる歯数で感心しない。
 今回見たのはO用のものである。動かないというのでそれを見ると、進み角が小さい。ウォームギヤの径が大きいからだ。3条であるのに進み角が普通の1条と大差ないのである。これではだめである。

 筆者が発表した記事には全ての情報が詰まっている。
 進み角を大きくすること、材質を異にすること(快削鋼とリン青銅)、潤滑油は二硫化モリブデンを含むものを使うこと、ギヤ比は互いに素にすること、スラスト・ベアリングを使うことである。
 それらをすべて守れば、必ず正しく動く。しかしながら、そんなことは何一つ考えていない。真似をするならすべて真似をすれば良い。こちらは特許申請していないのだから、直接問い合わせて来てもよいはずだ。喜んで教えただろう。間違ったものが世に出て、それが本家の評判を下げているとは思わなかった。いい迷惑だ。

2017年12月07日

続 modifying tailstock

 いろいろなところに手を入れた。本来旋盤という機械はそういうものである。買っただけで性能を発揮できるということは無い。使う人が手を入れ、部品を手作りして、はじめて、性能を発揮するのである。この記事の機械はやや凝り過ぎだが、素晴らしいものである。

 大切な点は、スピンドルの精度である。ベアリングのガタがなく、心押台のセンタとぴたりと合えば、まず問題ない。その他の部品は気が済むまで改良していけばよい。改良用の部品は無数にある。昔はそれが何処に売っているのか見当もつかなかった。工具屋に行って聞いてもよくわからない。

 町工場の社長が一番よく知っている。友人の父君には色々なことを教えてもらった。様々な部品も貰って、それを加工して使った。アッと驚くテクニックもあって、勉強になった。
 最近「ミニ旋盤を使いこなす本」久島諦造著 を再度熟読した。ほとんどのことは頭に入っていたつもりだったが、チャックに入らない太いドリルでワークに孔をあける方法には再度驚いた。ゆうえん様が「パズルゲームのようなもので」とおっしゃったが、本当にその通りである。

 模型工作の蘊蓄を語る人は多いが、旋盤を持っている人は少ない。旋盤を持てば、人生観が変わるはずだ。少ない金額で、これほど楽しめるものはない。模型屋に行く回数は激減するだろう。

moving support  写真は自宅の旋盤で、転車台のシャフトを挽いている様子だ。自分で改造した移動振れ止めで支えながら、Φ40の砲金の棒を中グリしている。刃物も自作である。刃先の位置が、振れ止めの位置と一致するところがミソである。写真では拭き取った後でよく分からないが、ワークの外側にはグリースを塗って作業する。昔鉄砲鍛冶に手ほどきを受けたので、中グリは得意である。  
 シャフトは最大限に太くして、剛性を大きくしないと、回転橋の動きが珍妙になる。

2017年12月05日

modifying tailstock

tailstock2 テイルストック(心押台)は、既製品のままでは具合が悪い。繰り出し量が少ないから、何とかしようと思っていた。畏友U氏が同じことを考え、改造されたことを知った。左ネジを切った長い押し棒を作られたのだ。筆者も自分で作ることにし、材料のS45Cの丸棒を調達した。長いから、削るときに中間を移動振れ止めで押さえねばならない。その準備もして、左ネジを切る算段をしていたのだが、久し振りのことでネジ切りの歯車セットをどこにやったのか、思い出せない。
 もたもたしているうちに、U氏が作って送って下さったので、ありがたく頂戴し、嵌め替えた。ネジが長くなったので、MT-1のテーパ・シャンクが長過ぎる。U氏に教えてもらった通りにテーパ部を22mmとした。何で切ろうか迷ったが、結局のところ、Brass_solder氏のアイデアで糸鋸で切った。1本12分かかって、糸鋸刃は1本折れる。計算通りだ。

 この旋盤のテイルストックには他にも問題があった。繰り出しのリミッタを兼ねるネジが、こちらから向こうに、水平に押している。これではセンタの心が出ない。
 やはりU氏も同じことを考えられ、スリ割りを入れてネジで締める形にされている。早速、1 mm のスリ割りを入れた。鋳鉄だからと甘く見たのはとんでもない間違いで、切削油を大量に使っても、切るのは苦労した。後で油の処理が大変であった。

 肉が薄いのでやや心配したが、M5のネジを立てて、セレーションのついたネジで締めた。この方法では全体を絞るので、センタが出る。当然、締める座はフライスで削って平らにした。
 廻り止めを兼ねた繰り出しリミッタは、20 mmずらして先端に近いところにM4タップを立てた。短いネジを締めたら、それだけで一発で解決した。

modifying lathe 刃物台も、セレーションの付いたクランプネジで締めた。道具を使わなくても操作できるので楽である。よく使うところはこれに限る。目立つ色にしたのは正解だ。
 刃物台が鈍く光っている。軽く面取りを施し、ゴム砥石で研いだのだ。来たばかりの時はフライス目が出てザラザラであった。ザラザラだと錆びやすいのだ。 

2017年12月03日

共通点

 Tortoiseなどは常時通電式である。微弱な電流で動くモータを使っている。所定の範囲を動いて停まると、その先は、直列につながれた抵抗にほとんどの電圧が分配され、モータは単なる電線であるから、熱が出ず焼けない。50年前、父がアメリカ製のエアコンの電動弁をばらして、驚いていたことを思い出す。それは、Honeywellの製品であった。それは、いわば「電気的辷り」とでも言うべき方法である。

 要するに通電しても仕事にならない「辷り」を生じさせて、無視できるほど僅かな発熱を承知で使っているのである。その動作をメカニズムで実現したかった。共通点は「辷り」である。

 モータが動き、ラックとピニオンで所定の位置まで行って当たると、発生する推力によって軽く押し付けられている。
 電力供給が止まれば、逆に押されて戻るようにしたい。機械的辷りを作り出さねばならない。単純な摩擦式ではいずれ壊れる。電気的な処理方法はあるだろうが、筆者の方針には合わない。

 このメカニズムは、様々な図を描いて検討した。ノッチの向きもそうだが、直線で曲線を近似するのをやめて、外側にもう一つの回転するドーナツ状の板を作り、それから内側へトングが出る方法も考えた。しかし、それはあまりにも複雑で、摩擦が大き過ぎる。

 簡単にして、何十年も全く故障なく使える、というものでなければならない。今回採用のアイデアは15年ほど前に思い付いたのだが、なかなか使う機会が無かった。

 さて、どんなメカニズムであろうか。


2017年12月01日

推力を一定にする

versine 転車台のindex(割り出し装置)はnotch(切込み)にtongue(楔状のもの)を差し込んで行う。相手は回転するから、位相差はトングの長さに影響する。
 要するに正規の位置にあれば短いが、多少ずれたのを戻すので、その時にversineが無視できない。僅かな距離だが、それをバネで補うとエネルギィが溜まるから、中心に行きにくくなる。正規の位置から外れた位置の方が、安定だからだ。それではセンタリングが効きにくくなる。

 慣性で回り続けようとする重い円盤のノッチにトングが差し込まれた時、ダンピングが働き、軽くブレーキが掛かることも要求される。別部品としてエアダンパをいくつか作ってみたが、大げさであるし、動きも要求を満たさなかった。
 トングを差し込むにはネジ式、ラック式などの方法があるが、バネを介してモータで押し込むと、エネルギィが蓄えられてしまうのだ。外れた位置から元に戻るときは、復元モータが働くのだが、その時抵抗少なく(多少のダンピングを伴い)所定位置に行って欲しい。軽く、いつも一定の力で、押し込まれていてほしいのだ。この解決法はなかなか難しい。

 これらの諸問題を同時に解決する方法を模索していた。一つにはTortoiseに代表される常時通電式のポイントマシンを使うことだが、これは逆駆動が難しい。トータスのギヤトレインの効率が良くないし、そのモータは普通の有鉄心マグネットモータだからだ。より高効率のメカニズムはできるが、その後の保守などを考えると得策ではない。要するに、壊れようがないメカニズムが必要なのだ。

2017年11月29日

rack & pinion

broken plastic rack 春先に自宅のWashlet(TOTO製)が壊れた。比較的高級な機種(TCF815)で、購入して4年ほどであった。故障ではなく、壊したのである。最低だ。


 使用中に、バリバリメリメリと音がして、ノズルが引っ掛かって止まった。押しても引いても動かない。突き出したままだから、トイレは使えない。仕方なく安物を買ってきて、仮に取り付けた。外したものを営業所に送って修理してもらおうと思ったが、現場での修理しか受け付けないと言う。こちらの都合など全くお構いなしで、取り付けた状態しか駄目だと言うのだ。取り付けられている状況を見ないといけないと言う。
 何が知りたいのかと聞くと水圧、水質、電源、日照の有無、気温、湿度だと言う。すべての正確なデータを測定して送ったが、屁理屈を付けて、「現場で」と言い張る。
 再度取り付けたら、トイレは使えない。滅茶苦茶な方針を押し付けようとする会社だ。出張費が欲しいのだろう。見掛け上の修理費を安くする方便に違いない。押し問答の末、正確な訪問時間を決め、元に戻した。

 当日、修理を見ていたら、内部のノズル繰り出し装置がフレクシブルなラックであって、それが折れていた。疲労したのだ。それはプラスティック(多分ナイロン)のラックの中に編みワイヤを封入したもので、いかにも細い。座屈して折れるのは、当たり前だ。
「なんだ、設計が間違っているじゃないか。」と言うと、修理員は申し訳なさそうな顔をして、「この機種の修理はすべて無料でさせて戴いています」と言う。最初からそう言えば良いのに。リコールの対象であるはずだ。購入者に不便を強いている。
 代替部品はかなり太く、これなら折れないだろうという形であった。座屈発生というのは、設計者にとって最低の失敗だ

 こんな設計はダメである。今回の転車台のメカニズムの設計は、それを見たときの印象が、大きく影響している。


2017年11月27日

続 turntable indexing

ring gear リング状の歯車を作った。もちろん既存の歯車の内側を削ったのだ。ボス付きの歯車のボスを銜えて廻し、所定の半径に中グリをする。
 DROの無い旋盤で、中グリをするのは怖い。うっかり削り過ぎると失敗だ。もう余分の材料は無い。何回も寸法をチェックし、2/100mmずつ削って、滑り込みにする。ボスから切り離した瞬間に、このような状態になる。 これをパイプに嵌めてハンダ付けする。モータでパイプを廻すと、ラックが出入りするのだ。

 ラックによる伸縮はネジ式に比べると利点が多い。ネジは逆駆動ができないのだ。もちろん三条ウォームのように進み角を大きくすればよいのだが、そんなネジを作っている暇はない。ラックとピニオンなら単純なメカニズムだ。ラックは十分に丈夫な太さにして、転がり摩擦で受けている。ガタはなくした。

 今回作っている装置は、すべて逆方向に力が掛かると滑らかに戻る。インデックス(割り出し)の動作で所定の位相で停止するが、制御者の意思が働いていない時は自由に回転できる。制御にはリミット・スウィッチは使わない。スイッチがあると、いかにも機械仕掛けで動いています、という感じを与えるからだ。つまり、玩具っぽい動きになる。本物はとても重いので、カチンカチンと動くことは無いのだ。あたかも人間がそこに居て、動かしているような感じを与えるような設計だ。

 要するに人間が意思を持って押しているような動きである。力を入れて所定の位置に持って行く。そこで力を緩めると、別の力が掛かっている時は、逆に動き始めるのだ。言葉では説明しにくいが、試運転を見た人は非常に驚き、「機械の動きのようには見えない。」という言葉が出た。

 すべての機構は、2度作り直した。

2017年11月25日

セレーション

tailstock 旋盤、フライス盤の整備を続行している。様々な留めネジをレヴァ式に改造している。六角レンチで毎回、締めたり緩めたりするのがとても面倒だからである。
 フライス盤の場合は、その位置にDROを付けたのでレンチが入りにくい。ネジの当たり面が浅いところにあるときは、座面を相対的に近づける必要があり、座面を削った。鉄鋳物だから、簡単に削れる。

locking lever この種のレヴァは作動位置を選んで、一番都合の良いところにネジの位相を決められる。締めるのは角度で30度くらいの範囲だから、その範囲が手の届きやすい向きにあれば、邪魔にもならず好都合だ。

 中のネジ頭の外周には刻みがある。これをセレーションという。綴りは serration である。大昔にその言葉は父から聞いたが、綴りを知ったのは30年ほど前である。語源は、ラテン語の鋸だ。シエラ・ネバダ山脈の Sierra とも関係がある。スペイン語でシエラは鋸、ネバダは雪である。雪の積もった鋸山という意味だ。
serrationserration2 要するにギザギザがあって、レヴァの内側にもそれと噛合う内歯がある。バネで押し付けられているから、それに逆らって持ち上げて位相を変える。ギザギザの歯型は、当然インボリュートではない。

 似たもので、スプラインがある。 splineは、軸上で動力伝達を行いながら移動する場合である。様々な歯型があり、最近は多数のボールを用いて滑らかに動くものもある。インボリュートもあるようだが、星型とか、六角とかいろいろなものがある。 
 
locking lever2ZAMAC 最近自宅のフライス盤の留めネジが壊れ始めた。シーズン・クラックである。使おうと思うと、割れて下に落ちている。4個のうち2個が壊れた。力を入れたときに壊れたわけではない。

 中国製だからということもあるだろうが、ダイキャストは信用できないことが分かる。最近の中国製の鉄道模型はどうなるのか。ダイキャスト製はいずれこのように割れてしまうのだろうか。


2017年11月23日

等角逆捻り機構のあり方

 先回で、T氏による解説が終わった。
 客観的であって、自説を売り込もうとか、俺は専門家だぞ、というところが全くない素晴らしい考察であったので、掲載させて戴いた。これで、この範疇のことは一応の決着が付いたように思う。小難しい学術用語は極力排除して戴いてあるので、誰にでも読めると思った。
 本来、こういう原稿はTMSに載せるべきであったが、もうすでにそういうこともできなくなりそうだ。

 過去に何回も論じたことだが、イコライザとバネは切り離して考えるべきである。議論の前に、ルールを決めなければいけない。自分の都合の良い方向に話を持って行くために、異なる次元のものを持ち込もうとする人がいるからだ。

 弾性梁というものを持ち出したい人もいるが、それは「バネ」と「イコライザ」を同時に用いている。
 世の中のどんなものも、完全な剛体ではない。しかし剛体と考えて理屈を考えようと言っている。その部材は多少撓むのなら、そのファクタを、別に「バネ」として考えるべきだ。しかし、模型のように小さなものは、事実上剛体として考えて良いのである。ヤング率が一定だから、モーメントが小さい時は曲がらないと考えて、何ら問題ではない。
 「バネ」は曲がるような形に作られている。コイルバネをよく見て戴きたい。細かく見ればよく分かるように、原理はトーション・バーなのだが、それを極端に長くしてあって、微小区間での捩じりは目に見えない。しかし全体では、その総和としての伸びが観察できるほどになっている。

 さて、天秤棒…は作ってみるまでもなかったが、簡単な実証モデルを作ってみた。作動状況は極めて良くなかった。「使い分け提案」にもあったように、車体の慣性モーメントの小さな、軽いモデルには使えるのかもしれないが、Oスケールでは全く駄目である。車体がプルプルと小刻みに振動し、おもちゃ以下の状態である。
 バネで台車を留めた車輌は、この天秤棒…と力学的に等価であるが、調整すれば良い走りを示すし、揺れ加減も具合が良い。ダンピング(振動を減衰させること)のおかげである。
 普段ダンピングを考えない人は多いが、それは摩擦の多い模型が大半だということの裏返しなのである。摩擦を減らすと、ダンピングが必要であることが分かる。
 理屈をこねるばかりでなく、実証モデルを作ってみられたい。しかし、それをしない人が多過ぎるのである。実験は大切だ。 

 コメントを寄せて戴きたい。

2017年11月21日

第6章 各種等角逆捻り機構の使い分け提案

(8回連載の8回目)
 最後に、ここまでの考察を通して各機構の使い分けについて考察します。なお、ここでは「ロンビック」を強制的に等角逆捻りさせるリンク機構の代表としています。魔法使いの弟子ヨー軸シーソーの方式もロンビックと同等でしょう。

 それでは、
ロンビックイコライザ(以下
Rh式と略)」
フカヒレイコライザ(同
F式)」
ロール・トーション・バー等角逆捻り(同
RT式)」
ピッチ・トーション・バー等角逆捻り(同
PT式)」
4
つについて考えます。

 Rhは基本的な原理が確立していますし、ガタや弾性変形を伴う動きが無いので、等角捻りを必要とする任意の車輌に搭載できると思います。

 次にFは図3のように斜め軸を回転軸としているので、厳密にはロール以外の運動が含まれてしまいます。そのため、ボギー車の場合、台車の回転に伴って、回転軸と台車ピッチング軸の成す角が近付くと、レイルのピッチングの影響を受けやすくなります。この条件になるのは、全長が短く、車幅の大きい(つまり回転軸がロール軸に対して大きな成す角になる)車輌で、しかも台車の回転角度が大きい、つまり急カーヴを曲がる車輌の場合と考えられます。これはちょうどナローのカブースなどではないでしょうか。このような車輌ではFはピッチングの影響を受けやすいと推察します。

 RTは、既に説明したとおり、軽量の小スケール車輌に簡単に組み込むのに向いていると思います。ボギー車の場合は、台車回転軸がロール以外の動きをしないように、何らかの形で拘束しないといけないでしょう。捩じりバネだけで輪軸を支持するには帯板の使用が有用と思われます。根本的には短編成に用いる二軸車に使用する簡易な方式だと思います。

 PTも前述のとおり、ピッチ剛性が弱いので全長が短い車輌が向いていると思います。あえてピッチングを弱くするのも、動きに面白味を与える上では良いかもしれません。

 最後に、これらの使い分け案を表1にまとめて掲載します。

表1 各等角逆捻り機構の使い分け案まとめ


 

名称

 

提案名

 

原理

 

動作

確実性


工作性(上)

調整性(下)

 

考察結果

ロンビックイコライザ
リンク式強制等角逆捻り全般)

リンクによる
強制ロール等角逆捻り



○〜△

工作が可能ならば全般的に良好

フカヒレイコライザ

上記を簡易化し、
バーサインを、
リンクの小さなガタで
巧妙に吸収



台車が大角度で回転する小型ボギー車には懸念有り

天秤棒イコライザ

ロール・トーション・バー等角捻り

バネ釣合による
ロール軸等角逆捻り


○〜△


小型二軸車などに容易に設置可

90度捻り天秤棒

ピッチ・トーション・バー等角捻り

上記のピッチ軸版



短尺小スケールの
二軸車等に有用



2017年11月19日

第5章 輪軸の弾性支持に関する考察

(8回連載の7回目)
 輪軸の弾性支持(要するにバネを利かせること)は、小型模型では【質量 バネ定数】の比率が本質的に実物と同値にできない上に、輪軸の変位が実物よりもはるかに大きいため、非常に難しい課題です。

 見掛けの動きだけを実物的に見せるのであれば、変位を最小限に抑える非弾性支持の等角逆捻りで良いと思いますが、ジョイント音や弾性的な動きに魅力を感じる様でしたら評価が全く異なると思います。ちょうど中間的ないわゆる「天秤棒イコライザ」、ロール・トーション・バー等角逆捻りは、ロールだけを弾性支持にしたものですので、ワークス
K氏の言うように「軸座バネ式の自由度を減じたもの」でしょう。こちらはイコライザ同様に変位を最小化可能であり、バネ長が長いため比較的大きなロール角度の変位に対応できるというメリットがあると思います。

 また、
HO程度の小型模型で輪軸を弾性支持にする場合、実物のバネを模した物をあきらめて、実物よりも細くて長いものでなければ、輪軸可動の効果を得ることは困難でしょう。その意味でも「天秤棒」のような長いバネは小型模型用には使いやすい構成です。例えば長いバネ2本をちょうどレイルと平行に床板下に這わせて、それで前後の輪軸を支持し、その2本のバネの中点で車体と結合するなどの応用もあると思います。



2017年11月17日

第4章 ロール軸の高さに関する考察

(8回連載の6回目)
 ロール軸高さの議論は、第1章で考察した通り、実車は車輌全体の図心軸を中心に捩じれますので、実車の近似的再現という意図であれば、回転中心は床上よりさらに上でも構わないと思います。ただし、模型としての機能性を考えますと、ワークスK氏の提唱される線路面と同一高さにロール軸を置きますと、車体の「レイル面に対する移動量」(地上座標系での車体変位)を最小化できます。(純粋な輪軸のロールのみなら重心高は変化なし=仕事しない)
 
 したがって、模型の線路に存在する大きな誤差に対しても、不自然に大きな車体の揺れを低減できると思います。また、コン氏が提唱されるロール軸を車軸高さ(輪軸のロール方向の図心)とした場合、車体と「輪軸との位置変化」(輪軸上に置いた座標系での車体変位)を最小にできます。なお別の視点から見ますと、ロール中心高さが連結器高さと大きく離れていると、連結運転で重牽引している際に曲線(特に登り勾配)で連結器からロール方向モーメント成分が大きく生じるので、ボディーが倒れやすくなる懸念があります。特に弾性支持の場合が気になるのですが、ロール・トーション・バー等角逆捻りでは床板近傍にロール軸(トーション・バーそのもの)があるので、連結器からのロール・モーメントが小さくなり問題は少ないでしょう。

 また逆説的に、ロール軸を高くするほど線路の誤差に対して車体が大きく変位するので、自由形などでは、あえてロール軸を高くして、フラフラ、ユラユラとユーモラスな走らせ方をさせることもできると思います。つまりロール軸高さは車輌に与えたい特性や工作性を考えて個々に判断する要素ではないでしょうか。



2017年11月15日

第3章「90度捻り天秤棒イコライザ」(ワークスK氏考案)についての考察

(8回連載の5回目)

図4
4 天秤棒90度逆捻りの概念図
 まず、「90度捻り天秤棒」の機構をワークスK氏がどのように意図されたかを考えます。記事を読みますと、ロール軸ではなくピッチ軸でトーション・バーを用いるという意図のようです。したがって、機構は図4のように考えられます。この図から、機構の名称についても、「ピッチ・トーション・バー等角逆捻り」で整合性が取れるかと思います。この機構は下段のようなイコライザ台車と等価です。さて、この機構は原理的には等角逆捻り効果があるのですが、長手方向に長い車体のピッチングをトーション・バーで支える構造であり、トーション・バー長も最大で車幅までと短いため、調整が難しいことが懸念されます。逆説的にいえば、ピッチング剛性を弱く作れるので、19世紀の馬車の車体を用いた客車のような模型の再現には良いかもしれません。小型の二軸車ならば比較的調整も容易ですし、柔かい動きを再現できると思います。なお、調整性能向上の案としては、ワークスK氏のブログでも示されていますように、イコライザ台車同様、支持バネを別途用意するのが良いのではないかと思います。


2017年11月13日

続 第2章「天秤棒イコライザ」に関する考察

図3(8回連載の4回目)
 図
3に「天秤棒イコライザ」「フカヒレイコライザ」「ロンビックイコライザ」の3つの機構を概念図で示します。ここではトーション・バー(捩じり棒バネ)は模式的に弦巻バネで示しています。図上では▲が輪軸との支点、▽が車体と機構の接合点(ともに自由支持)として記述しています。「天秤棒イコライザ」にはリンク機構はなく、輪軸同士がトーション・バーでつながっていると考えられます。このトーション・バーが小林氏の言う「天秤棒」です。そして、この機構はトーション・バーの長さの二等分点にトーション・バーとロール方向に剛な支持点(トーション・バーの左右にある2つの)を設けて、この支持点でボディーのロールを拘束するものと考えられます。このトーション・バーが支持点前後で同じ捩じりバネ定数を持っていると仮定すれば、輪軸間のロール角度を二等分する点でボディーを支持しているので、等角逆捻り効果自体は持っていると考えられます。この効果は、ボルスタ下にコイルバネが入ったボギー車と同じ原理とみなせるでしょう。しかしながら、この構造は輪軸のロール角度とボディーのロール角の差分が「イコールになる」のは確かですが、軸重平準化の機構とは言い難いと思います。さらに、輪軸の捻じれが生じた状態では、トーション・バーの反作用のトルクを線路が受け持つため、左右の車輪の支持荷重(輪重)が異なってしまい、かえってイコールではなくなってしまいます。その様な意味で、イコライザと言うのは少々無理があるというのが率直な意見です。

しかしながら、見方を変えれば、前章の図2で示したように、実物も車輌のロールの捻じれで力学的な仕事が発生しているのです。その意味では実物の車体の弾性捻じれの近似と言う意味では、却ってこちらの方式の方が近いものかもしれません。

 さて、それでは、この力学的な特性を元にこんな名前を考えてみました。「ロール・トーション・バー等角逆捻り」です。この方式のメリットは何よりも単純な構造です。トーション・バーが捩じりだけを支持するように注意さえすれば、バネ長が長いので剛性の調整がルースでも作動します。また、トーション・バーにヨー方向の機能を持たせないために帯板を用いるのは簡単で良い方法だと思います。他にも、工夫次第でバネ特性を色々いじれるので、軸バネ独立懸架よりも簡単にバネ効果のある動きや走行音を工夫できると思います。ただし、ボディー全体のロール回転拘束をトーション・バーだけに頼っているので、ボディー重量が重いOスケールなどのラージスケールではボディーのふらつきを抑えるため、輪軸の捩じれを止めてしまうほど堅いトーション・バーにせざるを得ず、等角逆捻りの効果が得られないでしょう。


 なお、ダンピング性能については、軽い小スケール小型車輌模型の場合、ダンピングが強すぎるとバネが中性点まで戻ってこない懸念(工学的には内部応力が残留した状態)が考えられます。結局はボルスタと床板の摩擦程度でのダンピングが現実的かと思います。

 まとめますと、名称としての「天秤棒イコライザ」は力学的な整合性としては少々無理があると思われますので、ロール・トーション・バー等角逆捻り」という名称を提案します。また、用途としては、その簡単な工作性とバネ特性の調整のし易さが生かせるので、小スケール(HO 以下)の2軸車等で有用な方式だと思います。



2017年11月11日

第2章「天秤棒イコライザ」に関する考察

(8回連載の3回目)

 ロールに関する概念を整理したところで、
TMS 876号で小林氏が発表された「天秤棒イコライザ」について考察します。既にdda40xコン氏ゆうえん氏ワークスKらが十分考察されているので、今回は、名称と力学的性質を比較するという側面からのみ考察します。つまり、「天秤棒」と「イコライザ」の2つの言葉からアプローチします。


「天秤棒」は一般的に両端に作用する同一方向の
2つの荷重を受け、中央支持点でバランスをとるものと考えられます。TMS 876号の最初の写真1で指先に機構を載せている写真はまさに天秤棒です。しかしながら、車輌に組み込まれた時、この機構は天秤棒として作用しているとは言い難いと思います。理由としては、ボディーの支持点が輪軸直上のボルスタの2箇所とロール留めのネジ留め箇所の1点であるためです。少し譲歩して、ボディーを中央のネジ留め箇所の1点でボディーの荷重を支持していると仮定しますと、確かに天秤棒を上下逆転させた形です。ところが今度はボルスタと床板が接触してはいけないことになり、TMS記事での解説に矛盾します。したがって、力学的な意味では「天秤棒」という名称は少々無理があると思います。

次に、「イコライザ」という名称についてです。そのためにイコライザの一般的な定義を確認しておきましょう。イコライザとは「イコールにするもの」、すなわち平衡装置のことです。さて、このイコールとは何をイコールにするのでしょうか?一般的には軸重を平準化するものと推測されます。もちろん、常に軸重を平準化できるわけではないですが、基本的には目標とする軸重に近づけるリンク機構を示すものだと思います。その観点から、天秤棒イコライザを考えましょう。そのために「天秤棒イコライザ」の機構原理を整理して、イコライザとしての条件を満たしているかを確認していきます。
                      (この章続く)



2017年11月09日

続 第1章 等角逆捻り機構の考察 

(8回連載の2回目)
 三点支持イコライザや等角逆捻り機構は、この誤差だらけの線路に足廻りだけを追従させる機構です。特に等角逆捻り機構は、通常の三点支持よりも車輌の振る舞いが比較的「実感的」であるという所に特徴があると言えるでしょう。その振る舞いを図2の下段右側に示します。つまり、実車の車体の捩じれの様子を、足廻りの捩じれ角度の半分のロール方向回転で近似しているのです。例えるなら、切れ目のないフランスパン一本が、それ自体は捩じれることなく、線路の捩じれ角の半分だけロール軸周りで回転しているというイメージです。

ここでもう一つ余談です。ヨーロッパHO車輌等に見られるハイフランジ固定軸は「脱線防止」以外の機能を妥協したものと理解しています。その代りに全軸集電やスケールスピードに徹した駆動機構など別の側面から実感的な走行をカバーしているのだと思います。


 さて、ここからは少々踏み込み、ロール捩じれに関する力学的な仕事について、実車と模型を比較してみましょう。まず、模型の等角逆捻り機構について考えます。こちらは単なるロール方向の回転なので、バネを捩じる様な(弾性変形を伴う力学的な)仕事をしている訳ではないことが分かります。厳密には重心高さとロール中心が若干ずれているため重心変動による微小な仕事は発生していますが、本質ではないので無視します。等角逆捻り機構が本質的には仕事をしないことについては、
dda40x氏のブログにも記事があります。

 ところが、実車はボディー全体が弾性変形しているので、捩じりによる仕事が入っているのです。つまり、実車はボディー全体が非常に弱いトーション・バー(捩じり棒バネ)として機能しています。ただし、映画の話にも書きましたように、実物は大きく捩じれると壊れてしまうので、あくまで微小な捩じれ角度範囲での話です。



2017年11月07日

等角逆捻り機構の考察 

 等角逆捻り機構に対する考察を、T氏に寄稿して戴いた。8回に亘って連載する。

           目次
第1章 等角逆捻り機構の考察 (2回に分けて連載)
第2章「天秤棒イコライザ」に関する考察 (2回に分けて連載)
第3章「90度捻り天秤棒イコライザ」(ワークスK氏考案)についての考察
第4章 ロール軸の高さに関する考察 
第5章 輪軸の弾性支持に関する考察
第6章 各種等角逆捻り機構の使い分け提案 



 dda40x氏へのコメントを機に、等角逆捻り機構に関する私見の発表の機会を与えて戴きました。僭越ながら、6テーマで記述します。なお、dda40x氏、コン氏、ワークスK氏、ゆうえんこうじ氏らの記事を拝見した上での考察ですので、重複等はお許しください。

第1章 等角逆捻り機構の考察 (基礎事項)

最初に等角逆捻り機構の考察に向けての基礎事項をまとめます。ほとんどの方には釈迦に説法でしょうから、図を見て「当たり前だ」と思われる方は、ここを読む必要はありません。

図1最初に、車体の回転および捩じれの座標軸を確認しておきます。図1の様に車体の前後方向(レールと平行)の回転軸をロール軸、左右方向(枕木と平行)をピッチ軸、鉛直方向(床板に垂直)をヨー軸と言います。等角逆捻り機構はロール軸に関する捩じりの議論であることは言うまでもないでしょう。

図2次に、実車と模型のロール運動に関する概念の違いを示します。図2は車輌が捩じれた線路上にある際に、実車と模型(等角逆捻り機構搭載)がどのような振る舞いをするかを模式的に描いています。下段左側の実車ではボディーのロール剛性が低い(柔かい)のでボディー全体が捩じれています。例えるなら、学校の物理実験室にあるウェーブマシンのすだれの個々の棒の上に、スライスしたフランスパンのような輪切りのボディー要素が載っているというイメージです。もちろん、実車は厳密には足回りにバネ装置他、線路の誤差をある程度緩和する装置を搭載してはいるのですが、それでも最終的にはボディーが捩じれを吸収するような設計になっているように思います。
 
 なお、余談ながら私のお気に入りのディズニーの実写映画
"The Great Locomotive Chase"(南北戦争で南軍列車を北軍がハイジャックした史実を元にした映画)の脱線シーンでは、築堤上で脱線した木造ボックスカーが捩じれながら崖下へ駆け下りていくのですが、最後は地面の捩じれに耐えられなくなって、屋根がカパッと外れて車体全体が崩れます。実車はそれほどロール方向の剛性が弱く、柔かいのです。

一方で、小型模型ではボディーのロール剛性が高い(堅い)ので、ボディーに捻じれを吸収させる機能は全く期待できません。それにも関わらず、小型模型には、実物よりも非常に大きな誤差(実物換算で数以上)がある線路の上を「脱線なく」、しかも「集電を伴って」、「実感的に」(カタカタせずスムースに)走らせることが求められます。この要求を満たすには、車体とは独立して足廻りを線路の誤差に追従させ、その足廻りと車体の変位差を吸収する積極的な機構(イコライザなど)が必要となるのです。
                       (この章続く)



2017年11月05日

turntable indexing

turntable indexing 転車台のメカニズムの製作は少しずつ進行している。スケッチだけで作っているのだ。長年に亘って故障しない構造にした。電気接点を一切なくし、摺動部を完全に排除して転がり摩擦のみにした。
 また、部品が疲労して折れることもないようにした。また、何かの異常があっても、すべての部品が安全サイドに傾くようにしてある。メンテナンスはほとんど要らないが、後日誰でも修理できるようにした。歯車には埃除けを付ける予定だ。
 歯車比は100:17とした。互いに素であり、ピニオンの歯数は14より大きい。こういう歯数を選ばないと音が大きくなる。やかましい車輛の大半は、ピニオンの歯数が少ない
 
 図面を描こうとも思ったが、1台しか作らないし、測定値を書き込みながら作図しなければならないので、個別のスケッチで用は足りることが分かった。
 今まではそのスケッチを元に自宅のフライスで削って、翌日合わせてみるという作業をしていたが、進捗があまりにも遅い。間違えて作ってしまって、作り直したことも多い。

 先月、小さいながらも稼働するフライスが来たので、仕事はかなりスピードアップされた。現場での修正が効くのは良い。移動の途中で部品を紛失することもなくなった。大きな物は自宅で作業する。

 インデックスのV字溝も切れた。これは 3/8インチ(9.5 mm)のボールベアリングが嵌まって動作する。それが直線状に動く溝を作っている。摺動部が全く無いように設計した。そうしないと長い間には磨り減って壊れてしまう。意外と力が掛かる部分なのだ。分厚い材料をふんだんに使う。

 廃品回収の店で手に入れたブラスのブロックを有効活用する。たいていは帯鋸で切った切れ端なので、メタル・ソウで大まかに切り、フライス盤で六面を仕上げて使う。切り粉が大量に出る。こういうものは快削材であるから気楽だ。あっという間にできる。材料が潤沢にあるので、設計は楽だ。いつもは、手持ちの材料で作るという制約があって、工夫が必要であったが、今回は好きなように設計できる。

 ブラスのはずなのに、とても切りにくい t4.0 の板がある。凄まじく粘く、歯が喰い込む。難削材用の刃物に取り換え、切削油を塗りながら作業する。ドリルで孔をあけると硬い螺旋状の切り粉が出る。折り曲げても折れない。ネジを切るのは大変な作業だ。これで機関車の台枠を作れると思っていたが、やめることにした。行き先がなくなったので、こういう大きな構造材に、惜しみなく使っている。  
cutting with coping saw この材料は黄色みが少なく、少し緑っぽい。大体の見当はつく。多分高価な材料(対海水の抵抗力がある合金)だろうが、タダ同然で手に入れた。1200×160(mm)もあって、切るのが大変だ。試しに糸鋸に油を付けて切ってみたが、30分かかった。もちろん糸鋸は3本消費した。確かに12分で折れるというのは正しい。切り口はフライスで落として真っ直ぐにする。

 いつも行く廃品回収の店に、切り粉や切りクズを持って行き、多少の追い銭を払って、ブロックや大きめの板と取り替える。スクラップがバケツ二杯(40 kg弱)溜まったので、そろそろ行く時期である。強力な磁石で鉄のクズを全て取ってから行く。そうしないと買い取り価格が下がってしまうのだ。
 鉄クズはまた100 kgほど溜まったので処分する。隠しヤード建設や、あちこちの補強に使った鋼材のクズである。こちらの買取価格は 、タダの次の価格であって、ガソリン代も出ないほどだ。と言っても、元は廃鋼材を拾ってきたものばかりだから、文句は言えない。

2017年11月03日

続々 micromill X-1 改造

122f43d2 このX-1は、Z軸の移動が重いのが腹立たしい。ヘッド部分の質量は
12 kgほどあるのだろう。降ろす時は自重で下がっていくから良いのだが、上げる時は大変だ。ハンドルが折れはしないかと思うほど、重い。その重さを何とかして釣り合わせねばならない。滑車を付けてカウンタ・バランスを付けるのが良いが、埃もつくし、スペイスの問題がある。また、釣合い重りが12 kgもあれば、さらに重くなる。

 筆者の自宅の機械には、オイル入りのエア・スプリングを付け、突っ張らせている。たまたま入手したエア・スプリングがとても具合がよく、全く重さを感じさせない。留めネジを緩めると、指先でヘッドが上下できる。目的のところで留めて、Z軸をゼロ設定すればよい。あまりにも軽快で、それに慣れていたので、今回のX-1の重さには根を上げた。

 モノタロウで一番小さいのを探して、150 N(約15 kg重)というのを購入した。細くて都合が良い。取り付ける場所は垂直に動くところが良いのだが、多少斜めになっていても全く問題ない。ネジを立てて、皿ネジで取り付けた。鋳鉄の加工は楽しい。
 ストロークが70mm程度しかないのだが、ヘッド自身が30 mmほど上下するので、都合100 mm程度動く。これは万力の高さ62 mmを含めても十分なストロークである。
 X-1の購入者で、Z軸が300 mmも動くことを必要とする人は、まずいないと思う。本当はZ軸上下用の送りネジを外して捨てたかった。同時にカラム(角柱)も上の方を100 mmほど切り捨てたかった。送りネジを切り縮め、ハンドル位置を下げれば良いのだが、今回は諦めた。
 
 どちらかというと、下げるのに力が要るようだ。120 N を買えばよかったかもしれない。贅沢を言えば、オイルが入ったダンピングの効くものが欲しかったが、これで十分である。
 この種のオイルレス・ガス・スプリングは消耗品であり、いくらでも手に入るものであるから、安物で十分である。
 
 先回の解答はコメントで発表した。今回の工事にも使用している。また、国内でも類似品が入手できることが分かった。この種の工作をしない人には、理解が難しいかもしれない。皿ネジの心が合っていない状態でネジを締めると、首が疲労してたちまち折れることを経験された方なら、この工具の意味はすぐ分かるだろう。
 このドリル径は3.2 mmすなわち1/8インチである。日本製のものはやや小ぶりである。

2017年11月01日

続 micromill X-1 改造

 Y軸DROは、ボール盤の穴深さ測定用に買ったのだが、その必要性もなく、放置されていたものだ。リモート表示になっているので都合が良い。
 アルミ・アングルに孔をあけ、切り落として取り付け具を作った。アルミ合金は粘いので、ネジが切りにくい。良い切削油を付けて、作業する。
 
Installing DRO 上から見た図で、下が左側である。本体に孔をあけ、同様の方法でネジを切る。Y軸方向に取り付け、読み取り装置の裏に金具を付けて、Y軸に平行に動くことを確認する。それに厚目のリン銅板を付け、Y軸テイブルに接着する。これも微妙な反りを吸収させるためだが、事実上、動きは見えない。もし反りが変わるのが見えるようなら、取り付け位置が間違っているのだ。

 接着にはスーパー召鰺僂い襦M郎泪好廛譽い任茲油気を取り、1日放置する。

 フライスのテイブルの座標は左手前を(0,0)とする。要するにテイブルが左に動くとX軸の数字が増えるようにする。また手前に動くとY軸の数字が増えるようにする。これを逆にしているものを見たことがある。本人しか使わないのでそれでも良いだろうが、一応常識というものは踏まえておきたい。
 当然Z軸もテイブル面がゼロ点だから、スピンドルが下に動けばマイナス方向である。Z軸DRO化はベルトドライヴ化が終わってからになる。リモートの表示器が手に入れば良いのだが、最近はどれを見ても高い。数字を首を傾げて見なければならない。昔は安かったのだが。  

 ベルト化改造部品は12月中旬到着のようである。注文された方は、電気部品を収納する箱を手に入れておいて戴きたい。本体の蓋を開けて、中の電装品ユニットの大きさを測定し、それが収納できるプラスティック製箱を用意されると良い。アルミ製でもブラス製でも良い。とにかく、さっと入替できるようにしておくべきである。現行の金属製の箱部分は、ごっそり外して捨てることになるからだ。
 現在の状態を写真に撮っておくと結線状態を確認しやすい。一度線を切り離すと作業が早くなるので、準備されることをお勧めする。


drill bit  ところでこれは何だろうか。電気ドリルに付けるものである。アメリカのホームセンタで30年前に買った。日本では見たことが無い。下の方に見えるらせんは、ドリルの刃の一部が見えているのだ。角のみではないから、触っても痛くない。先端が円錐台になっているのがヒントである。ここまで書くと、答を書いたようなものだが。 


2017年10月30日

micromill X-1 改造

micrimill DRO equipped 無期限貸与、実質的には寄贈されたX-1は完全に分解し、ネジを日本製に取り換えた。以前自分の旋盤やフライスを整備した時に買ったネジがまだ残っていたので、簡単な作業であった。中国製のネジは首がちぎれることがあったので、事前にその要因を排除したわけだ。カミソリ部分を念入りに調整し、全く引っ掛からず、滑らかに動くようにした。これには時間を掛けた。

 いくつかの部品を削ってみたが、普段からダイヤルを見て仕事をしていないので、うまくいかない。何度も間違えてしまい、あきらめた。自宅で部品棚を漁ると、DROが2本出て来た。落として先が曲がり、使えなくなったデジタルノギスも1本ある。それらを使って3次元DRO化してみようということになった。

 ブラスの角棒を斜めに削って沈め穴をあけ、テイブルに取り付けた。鉄鋳物だから、ドリルで穴を開けるのは簡単だ。出てくる切り粉は微粉状で、触ると手が真っ黒になる。グラファイトのせいだ。作業している穴の下に強力な磁石を置くと100%集められる。

 タップでネジを切るが、相手が鋳物であるから、低速の効くインパクトレンチで何度も往復させて切った。電動工具を正確に保持していれば、折ることはない。要はトルクだけが掛かるようにすることだ。少しでも重くなれば直ちに逆回転して、抜き取る。もちろんインパクトが効く前に止めなければならない。切削油は要らない。含まれているグラファイトが有効に働く。

 X軸DROを取り付ける。これは自宅用に買ったのだが、少し長さが足らず、取り替えたものだ。本体の裏にはリン銅板を曲げて取り付け、一端は本体に接着剤で貼り付ける。この取り付け方は簡便で、なおかつ多少の反りなどを吸収させることができる。斜めに付けると見易くて良い。
 もう一つのY軸の表示は並べて付けるが、それは水平にするから勘違いもなくなる。 

2017年10月28日

続 物理的考察

 先日博物館に、元国鉄で当時の新型特急の保守に当たっておられた高齢の方の来訪を受けた。現場をお見せすると、列車の規模にかなり驚かれたようだ。アメリカの鉄道には接することが無かったそうなので、それは当然だろう。

 最初の質問は、「フランジの摩耗にはどのように対処しているか。」であった。実物はフランジで曲がっているのだ。それは当然だが、この博物館の模型は違う。

「模型の線路の曲率は大きいので、フランジが当たると抵抗が大きくて走れませんし、仰るように磨り減ります。ここではフランジの手前のフィレット部分を大きくして当たらないようにしています。」と答えた。非常に不思議そうであった。
 実物関係者はだいたい同じ質問をする。実物と模型は違うのである。遠心力は無視できる。計算をするとすぐ分かるが、フランジに押し付けられることはない。同じだと思う人もいるようだが、実験しなくてもわかることだ。フランジが触るのは、ポイントで尖端レイルによって曲がる瞬間だけである。それも10番以上では、ほとんど触らない。

 カント (superelevation) も然りである。これについては以前にも書いた。カントは単に見栄えを良くするだけである。
 このように実物と模型は違うのであるが、自説を曲げない人はいる。走るところを見れば一目瞭然なのであるが、見たくないのだ。模型は実物と同じというファンタジーから抜けられないらしい。

 ところでRM Models の最新号に、筆者の作品が載っているそうだ。関西合運の記事の右上の方にあるとのことだが、田舎に住んでいるので本屋がなく、まだ見ていない。


2017年10月26日

物理的考察

 自動車競走に勝つ工夫を集めた動画がある、という連絡を受けた。なかなか面白い。グラファイト粉末、要するに鉛筆の芯の粉(Greasemという名でKadeeが売っている)を軸受に塗ると良いそうだ。液体による潤滑とどちらがよいかは、実験しなければ分からない。軸を曲げるという話も実験しないと分からないだろう。軸を磨くのは当然だ。
 筆者は、軸重の大きい後輪がガイドレールに触れると損だと思い、少し拡げて触らないようにしたことを思い出した。せいぜい1.5 mm程度(片側で0.75 mm)だ。
 重心を後ろに持って行くのは、効き目が格段に大きいらしい。これは実感できる。

 ついでにいくつかの動画を見たが、最近はかなり進化しているようだ。どれもこれも素晴らしい走りだ。30年前とは全く違う。アルミ合金引抜きのコース、ディジタルでの時間測定、着順判定は常識になってきた。


 人の乗れるsoapbox car derbyのレースは、ますます盛んになっている。これについては有名なインチキ事件があった。噂として広まっていたが、最近はそれがウェブ上ですぐに検索できるところが凄い。

 模型は木製の押えを、ゴムの張力などで瞬時に外すことによって発車する。乗用のものは大きいので、鋼パイプ等で作った押えを急に前方に倒すことによって発車する。 
 ある切れ者は、車の再前端に電磁石を付け、発車時に搭乗者のヘルメットを後ろに押し付けることによってスウィッチを入れるようにした。押え金具はバネによってバチンと倒れるので、それに吸い付けられた車は一瞬前に出る。こうしてレースでは軒並み優勝したのだが、誰も気が付かなかった。
 役員の中に疑いを持つものが出てきて、X線写真を撮ることになった。インチキはバレて、過去の栄誉はすべてはく奪され、なお且つ裁判で相当額の罰金を払うことになったそうだ。その理由は子供の非行を助けたというものだ。数回の優勝で止めておけば、永久にバレなかっただろう。

 このレースには物理学者がかなり貢献しているそうだ。これ以上できないというところまで来ているという。


2017年10月24日

続々 pine wood soap-box car

 どうしてこのような話を書くのかというと、鉄道模型は走らねばならないからである。見かけがよく出来ていても、牽けない列車では良くない。
 よく走り、壊れず、脱線しない。この三つがないと面白くないだろう。物理的な考察は必要だ。

 pine wood car derby でも全く一緒だ。
「形は素晴らしく、色も凝った仕上がりにしてある。素晴らしい流線形にしてある。でも走らない。」では駄目だろう。
 個別の理論はあちこちで聞く。「車輪とレイルとの接触点ではヘルツ応力が・・・」とか、様々な蘊蓄を聞くが、模型には関係のない話だ。
 様々な工学的知見は、その応用される領域では考慮せざるを得ないが、模型のような小さな力しか掛からないところで、そんな話をしても仕方がない。このような蘊蓄を語る人の模型が素晴らしいかというと、それとは関係なさそうだ。筆者も本物の様にレイルを内側に傾けると良い事があるかと思ったが、実験してみると、まったく変化はなかった。

 車を流線形にすると速くなるか、というのと同じだ。この程度の速度では真四角の車でも結果は同じである。何の効き目が大きいかということを見つけ出せないと、問題は解決しない。 


 先日例の数学者と久しぶりに会って話をした。よもやま話の中で、突然微分方程式の話をし始めた。彼曰く、
「話の中で、相手が『微分方程式で解かないとダメなんだ。』とか言い始めたら、その人の話は疑ってかかったほうが良い。」と言う。

 あまりにも唐突な話で付いていけなかった。
「そうなのかい?」
「世の中のほとんどの現象は、頭を使えばそんなものを使わなくても解けるし、微分方程式の大半は解けない。近似値しか求まらないんだ。話をごまかすためにその言葉が出てくるんだよ。気を付けるべきだ。」
 彼がそんな話を突然振ってきた背景も話してくれた。

 そうかもしれない。思い当たる話は筆者にもある。その件は、自分自身で微分方程式なしで単純な解析問題として解けたのだった。

 関西合運と自動車レースは関係なさそうだが、大いに関係があった。

2017年10月22日

続 pine wood soap-box car

pine wood car dervy そこにあったどの車も低重心にしていた。それが正しいと信じているのだろう。筆者はコースの出発部分に目を付けた。かなりの角度で持ち上がっている。ある程度進むと平坦になってゴールだ。

 重心が車体中央にあると出発時に稼げる位置エネルギィが少ない。車体後部に重心を持って行けば、持ち上げられる量が大きくなるから、蓄積されるエネルギィが大きくなるはずだ。あまり後ろに持って行くと前輪が浮いてしまって脱輪するから、錘を移動して、重心をホィール・ベースの 4/5 に持って行った。もちろん4つの車輪のうち、最もよく廻るもの2つを後ろに付けることにする。

 次に支給された車輪とクギを使わねばならないから、クギをよく研磨した。そのクギが通りそうなちょうど良い太さのパイプがあったので、タイヤの中心に差し込んだ。友人宅で旋盤を借りて作業したから、心は出ている。釘を挿して、歯磨き粉を入れて空回しした。少し黒い汁が出たところで研磨完了で、よく洗っておいた。
 車輪に自由度があればいろいろな工夫ができそうだが、それは許されていない。重い車輪にすると軸の摩擦が減るが、慣性モーメントが大きくなる。いろいろなことを考えねばならないだろう。

 次の土曜日の朝、子供たちにこれまでのことを話し、組んでミシン油を注した。
廊下で滑らせると素晴らしい走りであった。摩擦を減らすことは大切である。

 午後にボーイスカウトの集会に行って、エントリィした。車体は子供の描いたとおりのややクラシックなフォーミュラ・カァの形で、銀色に塗った。”No.1”と書いたものを貼っておいた。

 新人は順位の低いところから始まる。当初の試合では順当に勝ち進んだ。そのあたりではまともに走らない車ばかりだったので、こちらの性能には誰も気が付かなかったようだ。順当に勝ち進んでベスト8になると、皆よくできた車ばかりだ。

 最終の決勝では、1馬身以上の差をつけて優勝した。2位になった子供が悔しがって、再レースをすることになったが、やはり同じように差をつけて勝った。地区別の大会だったので、ご近所の人たちは大喜びで勝利を祝ってくれた。
 しかし、なぜ速いのかを質問する人はいなかったのが、不思議だった。翌日、大学で親しい物理の教授にその話をすると、非常に面白がって、筆者の戦術を褒めてくれた。
 翌週彼は、「コースの形をどのような形にすると、いちばん短時間でゴールに到着するようになるか」という問題を作って、学生にやらせていたようだ。


2017年10月20日

pine wood soap-box car

 Pinewood Derby Trackコースを見せてもらった。こんな形である。出発地点はかなりの角度で持ち上がっていて、押えを外すと数台が同時に発車する。写真はグーグルからお借りしている。
 動力はない。位置エネルギィを運動エネルギィに変えて、後は摩擦で速度が減衰していく。ただそれだけである。単純極まりないが、走りを見ていて閃いた。

 速い車は摩擦が少ないのは当然だが、コースの形を考慮している人はいない。車体の質量は最大値が決まっている。車輪・車軸は支給されたものを使う。車体幅、長さ、高さには制限があるが、色、装飾には何ら制限はない。

 息子たちにレースへの出場の話をすると、盛り上がった。速いのを作ってくれと言うのだ。それでは絵を描けと言うと、大きな羽根を付けたロケットエンジン推進のものを描いた。制限にひっかかるので、それは却下した。それでは、と描いたのはよくあるタイプのものであった。でも後ろに小さい羽根を付けてくれと頼まれた。形を良くすると速くなると信じているのだろう。先をとがらせるという注文も受けた。

 筆者の頭の中にはあるアイデアが固まっていた。物理的に勝つ方法だ。 

2017年10月18日

走りについて

 会場を一巡りして気が付くのは、油切れの車輛があることだ。キーキー言うのだが、それを見とがめる人が居ないというのは、不思議である。
 筆者はあの音は生理的に受け付けない。すぐに退散したが、そのまま運転したのだろうか。
 フル編成の客車列車があるのだが、重くて牽けない。「機関車に力がない」という表現を聞いたが、そうではないはずだ。すべて牽かれるものの責任だ。客車の台車をよく整備して注油すれば、直ちに解決するはずだ。 
 中学校の理科の問題なのだが、解決は難しそうだ。凄じく細密な車輛もいくつかあったが、走りは見ていない。

 帰宅した晩に、先述の木片を見つけた。その木片と会場で見た車輛との関係が結びついた。 
 あれは近所の子供の同級生の親から渡されたものだ。近々ある行事があるので、準備してくれというのだ。
 はじめは何か分からなかった。土曜日の午後、集会所に行くと子供も親も何人か居て、あることをやっている。見せてもらったのは自動車の模型である。走行用のコースも作ってある。毎年使っているのだろう。組立式であった。木製でかなり大規模なものだ。

Recent Comments
Archives
Recent TrackBacks
Categories
  • ライブドアブログ